Restructured some of the Taguchi optimisation code, and added function to write OAs on demand.

这个提交包含在:
Craig Warren
2016-01-21 15:31:02 +00:00
父节点 b41158296d
当前提交 84ba161be0
共有 5 个文件被更改,包括 49 次插入84 次删除

查看文件

@@ -73,7 +73,7 @@ def main():
# Process for Taguchi optimisation #
########################################
if args.opt_taguchi:
from user_libs.optimisations.taguchi import taguchi_code_blocks, construct_OA, calculate_ranges_experiments, calculate_optimal_levels, plot_optimisation_history
from gprMax.optimisation_taguchi import taguchi_code_blocks, construct_OA, calculate_ranges_experiments, calculate_optimal_levels, plot_optimisation_history
# Default maximum number of iterations of optimisation to perform (used if the stopping criterion is not achieved)
maxiterations = 20
@@ -96,10 +96,11 @@ def main():
optparamshist = OrderedDict((key, list()) for key in optparams)
# Import specified fitness function
fitness_metric = getattr(importlib.import_module('user_libs.optimisations.taguchi_fitness'), fitness['name'])
fitness_metric = getattr(importlib.import_module('user_libs.optimisation_taguchi_fitness'), fitness['name'])
# Select OA
OA, N, k, s = construct_OA(optparams)
OA, N, cols, k, s, t = construct_OA(optparams)
print('\n{}\n\nTaguchi optimisation: orthogonal array with {} experiments, {} parameters ({} used), {} levels, and strength {} will be used.'.format(68*'*', N, cols, k, s, t))
# Initialise arrays and lists to store parameters required throughout optimisation
# Lower, central, and upper values for each parameter
@@ -236,13 +237,16 @@ def main():
# Stop optimisation if stopping criterion has been reached
if fitnessvalueshist[i - 1] > fitness['stop']:
print('\nTaguchi optimisation stopped as fitness criteria reached')
break
# # Stop optimisation if successive fitness values are within 1%
# if i > 2:
# fitnessvaluesclose = (np.abs(fitnessvalueshist[i - 2] - fitnessvalueshist[i - 1]) / fitnessvalueshist[i - 1]) * 100
# if fitnessvaluesclose < 1:
# break
# Stop optimisation if successive fitness values are within 0.5%
if i > 2:
fitnessvaluesclose = (np.abs(fitnessvalueshist[i - 2] - fitnessvalueshist[i - 1]) / fitnessvalueshist[i - 1]) * 100
fitnessvaluesthres = 0.1
if fitnessvaluesclose < fitnessvaluesthres:
print('\nTaguchi optimisation stopped as successive fitness values within {}%'.format(fitnessvaluesthres))
break
# Save optimisation parameters history and fitness values history to file
opthistfile = inputfileparts[0] + '_hist'

查看文件

@@ -65,89 +65,50 @@ def construct_OA(optparams):
Returns:
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
cols (int): Number of columns in OA
k (int): Number of columns in OA cut down to number of parameters to optimise
s (int): Number of levels in OA
t (int): Strength of OA
"""
# S=3; % 3 level OA
#J=3;
#M=S^J; % number of experiments
#
#for k=1:J % for basic columns
# j=(S^(k-1)-1)/(S-1)+1;
# for i=1:M
# A(i,j)=mod(floor((i-1)/(S^(J-k))),S);
# end
#end
#
#for k=2:J % for non-basic columns
# j=(S^(k-1)-1)/(S-1)+1;
# for p=1:j-1
# for q=1:S-1
# A(:,(j+(p-1)*(S-1)+q))=mod((A(:,p)*q+A(:,j)),S);
# end
# end
#end
#
#
#[N,K]=size(A);
#str1=num2str(N,'%0.1d');
#str2=num2str(K,'%0.1d');
#str3=num2str(S,'%0.1d');
#TT=['OA(' str1 ',' str2 ',' str3 ',2).txt'];
#fid2=fopen(TT,'wt');
#
#for j=1:N
# for k=1:K
# fprintf(fid2,'%0.1d ',A(j,k));
# if k==K
# fprintf(fid2,'\n');
# end
# end
#end
# Properties of the orthogonal array (OA)
# Strength
t = 2
s = 3 # Number of levels
t = 2 # Strength
# p = 2
# N = s**p # Number of experiments
# a = np.zeros((N, 4), dtype=np.int)
#
# # Construct basic columns
# for ii in range(0, p):
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
# for m in range(0, N):
# a[m, k] = np.mod(np.floor((m - 1) / (s**(p - ii))), s)
#
# # Construct non-basic columns
# for ii in range(1, p):
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
# for jj in range(0, k - 1):
# for kk in range(0, s - 1):
# a[:, k + ((jj - 1) * (s - 1) + kk)] = np.mod(a[:, jj] * kk + a[:, k], s)
#
# print(a)
# Load the appropriate OA
if len(optparams) <= 4:
OA = np.load(os.path.join(moduledirectory, 'OA_9_4_3_2.npy'))
elif len(optparams) <= 7:
OA = np.load(os.path.join(moduledirectory, 'OA_18_7_3_2.npy'))
else:
raise CmdInputError('Too many parameters to optimise for the available orthogonal arrays (OA). Please find and load a bigger, suitable OA.')
print(OA)
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:len(optparams)]
# Number of experiments
N = OA.shape[0]
# Number of levels
s = 3
# Number of parameters to optimise
k = OA.shape[1]
k = len(optparams)
p = int(np.ceil(np.log(k * (s - 1) + 1) / np.log(s)))
# Number of experiments
N = s**p
return OA, N, k, s
# Number of columns
cols = int((N - 1) / (s - 1))
# Algorithm to construct OA from: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6812898
OA = np.zeros((N + 1, cols + 1), dtype=np.int8)
# Construct basic columns
for ii in range(1, p + 1):
col = int((s**(ii - 1) - 1) / (s - 1) + 1)
for row in range(1, N + 1):
OA[row, col] = np.mod(np.floor((row - 1) / (s**(p - ii))), s)
# Construct non-basic columns
for ii in range(2, p + 1):
col = int((s**(ii - 1) - 1) / (s - 1) + 1)
for jj in range(1, col):
for kk in range(1, s):
OA[:, col + (jj - 1) * (s - 1) + kk] = np.mod(OA[:, jj] * kk + OA[:, col], s)
# First row and first columns are unneccessary, only there to match algorithm, and cut down columns to number of parameters to optimise
OA = OA[1::, 1::k]
return OA, N, cols, k, s, t
def calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, i):

二进制文件未显示。

二进制文件未显示。