你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 20:46:52 +08:00
Restructured some of the Taguchi optimisation code, and added function to write OAs on demand.
这个提交包含在:
二进制文件未显示。
二进制文件未显示。
@@ -1,305 +0,0 @@
|
||||
# Copyright (C) 2015, Craig Warren
|
||||
#
|
||||
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
|
||||
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
|
||||
#
|
||||
# Please use the attribution at http://dx.doi.org/10.1190/1.3548506
|
||||
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
import h5py
|
||||
|
||||
from gprMax.constants import floattype
|
||||
from gprMax.exceptions import CmdInputError
|
||||
|
||||
moduledirectory = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
|
||||
def taguchi_code_blocks(inputfile, taguchinamespace):
|
||||
"""Looks for and processes a Taguchi code block (containing Python code) in the input file. It will ignore any lines that are comments, i.e. begin with a double hash (##), and any blank lines.
|
||||
|
||||
Args:
|
||||
inputfile (str): Name of the input file to open.
|
||||
taguchinamespace (dict): Namespace that can be accessed by user a Taguchi code block in input file.
|
||||
|
||||
Returns:
|
||||
processedlines (list): Input commands after Python processing.
|
||||
"""
|
||||
|
||||
with open(inputfile, 'r') as f:
|
||||
# Strip out any newline characters and comments that must begin with double hashes
|
||||
inputlines = [line.rstrip() for line in f if(not line.startswith('##') and line.rstrip('\n'))]
|
||||
|
||||
x = 0
|
||||
while(x < len(inputlines)):
|
||||
if(inputlines[x].startswith('#taguchi:')):
|
||||
# String to hold Python code to be executed
|
||||
taguchicode = ''
|
||||
x += 1
|
||||
while not inputlines[x].startswith('#end_taguchi:'):
|
||||
# Add all code in current code block to string
|
||||
taguchicode += inputlines[x] + '\n'
|
||||
x += 1
|
||||
if x == len(inputlines):
|
||||
raise CmdInputError('Cannot find the end of the Taguchi code block, i.e. missing #end_taguchi: command.')
|
||||
|
||||
# Compile code for faster execution
|
||||
taguchicompiledcode = compile(taguchicode, '<string>', 'exec')
|
||||
|
||||
# Execute code block & make available only usernamespace
|
||||
exec(taguchicompiledcode, taguchinamespace)
|
||||
|
||||
x += 1
|
||||
|
||||
return taguchinamespace
|
||||
|
||||
|
||||
def construct_OA(optparams):
|
||||
"""Load an orthogonal array (OA) from a numpy file. Configure and return OA and properties of OA.
|
||||
|
||||
Args:
|
||||
optparams (dict): Dictionary containing name of parameters to optimise and their initial ranges
|
||||
|
||||
Returns:
|
||||
OA (array): Orthogonal array
|
||||
N (int): Number of experiments in OA
|
||||
k (int): Number of parameters to optimise in OA
|
||||
s (int): Number of levels in OA
|
||||
t (int): Strength of OA
|
||||
"""
|
||||
|
||||
# S=3; % 3 level OA
|
||||
#J=3;
|
||||
#M=S^J; % number of experiments
|
||||
#
|
||||
#for k=1:J % for basic columns
|
||||
# j=(S^(k-1)-1)/(S-1)+1;
|
||||
# for i=1:M
|
||||
# A(i,j)=mod(floor((i-1)/(S^(J-k))),S);
|
||||
# end
|
||||
#end
|
||||
#
|
||||
#for k=2:J % for non-basic columns
|
||||
# j=(S^(k-1)-1)/(S-1)+1;
|
||||
# for p=1:j-1
|
||||
# for q=1:S-1
|
||||
# A(:,(j+(p-1)*(S-1)+q))=mod((A(:,p)*q+A(:,j)),S);
|
||||
# end
|
||||
# end
|
||||
#end
|
||||
#
|
||||
#
|
||||
#[N,K]=size(A);
|
||||
#str1=num2str(N,'%0.1d');
|
||||
#str2=num2str(K,'%0.1d');
|
||||
#str3=num2str(S,'%0.1d');
|
||||
#TT=['OA(' str1 ',' str2 ',' str3 ',2).txt'];
|
||||
#fid2=fopen(TT,'wt');
|
||||
#
|
||||
#for j=1:N
|
||||
# for k=1:K
|
||||
# fprintf(fid2,'%0.1d ',A(j,k));
|
||||
# if k==K
|
||||
# fprintf(fid2,'\n');
|
||||
# end
|
||||
# end
|
||||
#end
|
||||
|
||||
s = 3 # Number of levels
|
||||
t = 2 # Strength
|
||||
# p = 2
|
||||
# N = s**p # Number of experiments
|
||||
# a = np.zeros((N, 4), dtype=np.int)
|
||||
#
|
||||
# # Construct basic columns
|
||||
# for ii in range(0, p):
|
||||
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
|
||||
# for m in range(0, N):
|
||||
# a[m, k] = np.mod(np.floor((m - 1) / (s**(p - ii))), s)
|
||||
#
|
||||
# # Construct non-basic columns
|
||||
# for ii in range(1, p):
|
||||
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
|
||||
# for jj in range(0, k - 1):
|
||||
# for kk in range(0, s - 1):
|
||||
# a[:, k + ((jj - 1) * (s - 1) + kk)] = np.mod(a[:, jj] * kk + a[:, k], s)
|
||||
#
|
||||
# print(a)
|
||||
|
||||
# Load the appropriate OA
|
||||
if len(optparams) <= 4:
|
||||
OA = np.load(os.path.join(moduledirectory, 'OA_9_4_3_2.npy'))
|
||||
elif len(optparams) <= 7:
|
||||
OA = np.load(os.path.join(moduledirectory, 'OA_18_7_3_2.npy'))
|
||||
else:
|
||||
raise CmdInputError('Too many parameters to optimise for the available orthogonal arrays (OA). Please find and load a bigger, suitable OA.')
|
||||
print(OA)
|
||||
# Cut down OA columns to number of parameters to optimise
|
||||
OA = OA[:, 0:len(optparams)]
|
||||
|
||||
# Number of experiments
|
||||
N = OA.shape[0]
|
||||
|
||||
# Number of parameters to optimise
|
||||
k = OA.shape[1]
|
||||
|
||||
|
||||
|
||||
return OA, N, k, s
|
||||
|
||||
|
||||
def calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, i):
|
||||
"""Calculate values for parameters to optimise for a set of experiments.
|
||||
|
||||
Args:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
optparamsinit (list): Initial ranges for parameters to optimise
|
||||
levels (array): Lower, central, and upper values for each parameter
|
||||
levelsopt (array): Optimal level for each parameter from previous iteration
|
||||
levelsdiff (array): Difference used to set values in levels array
|
||||
OA (array): Orthogonal array
|
||||
N (int): Number of experiments in OA
|
||||
k (int): Number of parameters to optimise in OA
|
||||
s (int): Number of levels in OA
|
||||
i (int): Iteration number
|
||||
|
||||
Returns:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
levels (array): Lower, central, and upper values for each parameter
|
||||
levelsdiff (array): Difference used to set values in levels array
|
||||
"""
|
||||
|
||||
# Gaussian reduction function used for calculating levels
|
||||
T = 18 # Usually values between 15 - 20
|
||||
RR = np.exp(-(i/T)**2)
|
||||
|
||||
# Calculate levels for each parameter
|
||||
for p in range(0, k):
|
||||
# Central levels - for first iteration set to midpoint of initial range and don't use RR
|
||||
if i == 0:
|
||||
levels[1, p] = ((optparamsinit[p][1][1] - optparamsinit[p][1][0]) / 2) + optparamsinit[p][1][0]
|
||||
levelsdiff[p] = (optparamsinit[p][1][1] - optparamsinit[p][1][0]) / (s + 1)
|
||||
# Central levels - set to optimum from previous iteration
|
||||
else:
|
||||
levels[1, p] = levels[levelsopt[p], p]
|
||||
levelsdiff[p] = RR * levelsdiff[p]
|
||||
|
||||
# Lower levels set using central level and level differences values; and check they are not outwith initial ranges
|
||||
if levels[1, p] - levelsdiff[p] < optparamsinit[p][1][0]:
|
||||
levels[0, p] = optparamsinit[p][1][0]
|
||||
else:
|
||||
levels[0, p] = levels[1, p] - levelsdiff[p]
|
||||
|
||||
# Upper levels set using central level and level differences values; and check they are not outwith initial ranges
|
||||
if levels[1, p] + levelsdiff[p] > optparamsinit[p][1][1]:
|
||||
levels[2, p] = optparamsinit[p][1][1]
|
||||
else:
|
||||
levels[2, p] = levels[1, p] + levelsdiff[p]
|
||||
|
||||
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
|
||||
optparams = OrderedDict((key, list()) for key in optparams)
|
||||
p = 0
|
||||
for key, value in optparams.items():
|
||||
for exp in range(0, N):
|
||||
if OA[exp, p] == 0:
|
||||
optparams[key].append(levels[0, p])
|
||||
elif OA[exp, p] == 1:
|
||||
optparams[key].append(levels[1, p])
|
||||
elif OA[exp, p] == 2:
|
||||
optparams[key].append(levels[2, p])
|
||||
p += 1
|
||||
|
||||
return optparams, levels, levelsdiff
|
||||
|
||||
|
||||
def calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k):
|
||||
"""Calculate optimal levels from results of fitness metric by building a response table.
|
||||
|
||||
Args:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
levels (array): Lower, central, and upper values for each parameter
|
||||
levelsopt (array): Optimal level for each parameter from previous iteration
|
||||
fitnessvalues (list): Values from results of fitness metric
|
||||
OA (array): Orthogonal array
|
||||
N (int): Number of experiments in OA
|
||||
k (int): Number of parameters to optimise in OA
|
||||
|
||||
Returns:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
levelsopt (array): Optimal level for each parameter from previous iteration
|
||||
"""
|
||||
|
||||
# Build a table of responses based on the results of the fitness metric
|
||||
for p in range(0, k):
|
||||
responses = np.zeros(3, dtype=floattype)
|
||||
|
||||
cnt1 = 0
|
||||
cnt2 = 0
|
||||
cnt3 = 0
|
||||
|
||||
for exp in range(1, N):
|
||||
if OA[exp, p] == 0:
|
||||
responses[0] += fitnessvalues[exp]
|
||||
cnt1 += 1
|
||||
elif OA[exp, p] == 1:
|
||||
responses[1] += fitnessvalues[exp]
|
||||
cnt2 += 1
|
||||
elif OA[exp, p] == 2:
|
||||
responses[2] += fitnessvalues[exp]
|
||||
cnt3 += 1
|
||||
|
||||
responses[0] /= cnt1
|
||||
responses[1] /= cnt2
|
||||
responses[2] /= cnt3
|
||||
|
||||
# Calculate optimal level from table of responses
|
||||
tmp = np.where(responses == np.amax(responses))[0]
|
||||
|
||||
# If there is more than one level found use the first
|
||||
if len(tmp) > 1:
|
||||
tmp = tmp[0]
|
||||
|
||||
levelsopt[p] = tmp
|
||||
|
||||
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
|
||||
optparams = OrderedDict((key, list()) for key in optparams)
|
||||
p = 0
|
||||
for key, value in optparams.items():
|
||||
optparams[key].append(levels[levelsopt[p], p])
|
||||
p += 1
|
||||
|
||||
return optparams, levelsopt
|
||||
|
||||
|
||||
def plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit):
|
||||
"""Plot the history of fitness values and each optimised parameter values for the optimisation.
|
||||
|
||||
Args:
|
||||
fitnessvalueshist (list): History of fitness values
|
||||
optparamshist (dict): Name of parameters to optimise and history of their values
|
||||
"""
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Plot history of fitness values
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Fitness value'), num='History of fitness values', figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
iterations = np.arange(1, len(fitnessvalueshist) + 1)
|
||||
ax.plot(iterations, fitnessvalueshist, 'r', marker='.', ms=15, lw=1)
|
||||
ax.set_xlim(1, len(fitnessvalueshist))
|
||||
ax.grid()
|
||||
|
||||
# Plot history of optimisation parameters
|
||||
p = 0
|
||||
for key, value in optparamshist.items():
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Parameter value'), num='History of ' + key + ' parameter', figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
ax.plot(iterations, optparamshist[key], 'r', marker='.', ms=15, lw=1)
|
||||
ax.set_xlim(1, len(fitnessvalueshist))
|
||||
ax.set_ylim(optparamsinit[p][1][0], optparamsinit[p][1][1])
|
||||
ax.grid()
|
||||
p += 1
|
||||
plt.show()
|
||||
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户