Restructured some of the Taguchi optimisation code, and added function to write OAs on demand.

这个提交包含在:
Craig Warren
2016-01-21 15:31:02 +00:00
父节点 b41158296d
当前提交 84ba161be0
共有 5 个文件被更改,包括 49 次插入84 次删除

二进制文件未显示。

二进制文件未显示。

查看文件

@@ -1,305 +0,0 @@
# Copyright (C) 2015, Craig Warren
#
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
#
# Please use the attribution at http://dx.doi.org/10.1190/1.3548506
import os
from collections import OrderedDict
import numpy as np
import h5py
from gprMax.constants import floattype
from gprMax.exceptions import CmdInputError
moduledirectory = os.path.dirname(os.path.abspath(__file__))
def taguchi_code_blocks(inputfile, taguchinamespace):
"""Looks for and processes a Taguchi code block (containing Python code) in the input file. It will ignore any lines that are comments, i.e. begin with a double hash (##), and any blank lines.
Args:
inputfile (str): Name of the input file to open.
taguchinamespace (dict): Namespace that can be accessed by user a Taguchi code block in input file.
Returns:
processedlines (list): Input commands after Python processing.
"""
with open(inputfile, 'r') as f:
# Strip out any newline characters and comments that must begin with double hashes
inputlines = [line.rstrip() for line in f if(not line.startswith('##') and line.rstrip('\n'))]
x = 0
while(x < len(inputlines)):
if(inputlines[x].startswith('#taguchi:')):
# String to hold Python code to be executed
taguchicode = ''
x += 1
while not inputlines[x].startswith('#end_taguchi:'):
# Add all code in current code block to string
taguchicode += inputlines[x] + '\n'
x += 1
if x == len(inputlines):
raise CmdInputError('Cannot find the end of the Taguchi code block, i.e. missing #end_taguchi: command.')
# Compile code for faster execution
taguchicompiledcode = compile(taguchicode, '<string>', 'exec')
# Execute code block & make available only usernamespace
exec(taguchicompiledcode, taguchinamespace)
x += 1
return taguchinamespace
def construct_OA(optparams):
"""Load an orthogonal array (OA) from a numpy file. Configure and return OA and properties of OA.
Args:
optparams (dict): Dictionary containing name of parameters to optimise and their initial ranges
Returns:
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
s (int): Number of levels in OA
t (int): Strength of OA
"""
# S=3; % 3 level OA
#J=3;
#M=S^J; % number of experiments
#
#for k=1:J % for basic columns
# j=(S^(k-1)-1)/(S-1)+1;
# for i=1:M
# A(i,j)=mod(floor((i-1)/(S^(J-k))),S);
# end
#end
#
#for k=2:J % for non-basic columns
# j=(S^(k-1)-1)/(S-1)+1;
# for p=1:j-1
# for q=1:S-1
# A(:,(j+(p-1)*(S-1)+q))=mod((A(:,p)*q+A(:,j)),S);
# end
# end
#end
#
#
#[N,K]=size(A);
#str1=num2str(N,'%0.1d');
#str2=num2str(K,'%0.1d');
#str3=num2str(S,'%0.1d');
#TT=['OA(' str1 ',' str2 ',' str3 ',2).txt'];
#fid2=fopen(TT,'wt');
#
#for j=1:N
# for k=1:K
# fprintf(fid2,'%0.1d ',A(j,k));
# if k==K
# fprintf(fid2,'\n');
# end
# end
#end
s = 3 # Number of levels
t = 2 # Strength
# p = 2
# N = s**p # Number of experiments
# a = np.zeros((N, 4), dtype=np.int)
#
# # Construct basic columns
# for ii in range(0, p):
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
# for m in range(0, N):
# a[m, k] = np.mod(np.floor((m - 1) / (s**(p - ii))), s)
#
# # Construct non-basic columns
# for ii in range(1, p):
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
# for jj in range(0, k - 1):
# for kk in range(0, s - 1):
# a[:, k + ((jj - 1) * (s - 1) + kk)] = np.mod(a[:, jj] * kk + a[:, k], s)
#
# print(a)
# Load the appropriate OA
if len(optparams) <= 4:
OA = np.load(os.path.join(moduledirectory, 'OA_9_4_3_2.npy'))
elif len(optparams) <= 7:
OA = np.load(os.path.join(moduledirectory, 'OA_18_7_3_2.npy'))
else:
raise CmdInputError('Too many parameters to optimise for the available orthogonal arrays (OA). Please find and load a bigger, suitable OA.')
print(OA)
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:len(optparams)]
# Number of experiments
N = OA.shape[0]
# Number of parameters to optimise
k = OA.shape[1]
return OA, N, k, s
def calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, i):
"""Calculate values for parameters to optimise for a set of experiments.
Args:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
optparamsinit (list): Initial ranges for parameters to optimise
levels (array): Lower, central, and upper values for each parameter
levelsopt (array): Optimal level for each parameter from previous iteration
levelsdiff (array): Difference used to set values in levels array
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
s (int): Number of levels in OA
i (int): Iteration number
Returns:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levels (array): Lower, central, and upper values for each parameter
levelsdiff (array): Difference used to set values in levels array
"""
# Gaussian reduction function used for calculating levels
T = 18 # Usually values between 15 - 20
RR = np.exp(-(i/T)**2)
# Calculate levels for each parameter
for p in range(0, k):
# Central levels - for first iteration set to midpoint of initial range and don't use RR
if i == 0:
levels[1, p] = ((optparamsinit[p][1][1] - optparamsinit[p][1][0]) / 2) + optparamsinit[p][1][0]
levelsdiff[p] = (optparamsinit[p][1][1] - optparamsinit[p][1][0]) / (s + 1)
# Central levels - set to optimum from previous iteration
else:
levels[1, p] = levels[levelsopt[p], p]
levelsdiff[p] = RR * levelsdiff[p]
# Lower levels set using central level and level differences values; and check they are not outwith initial ranges
if levels[1, p] - levelsdiff[p] < optparamsinit[p][1][0]:
levels[0, p] = optparamsinit[p][1][0]
else:
levels[0, p] = levels[1, p] - levelsdiff[p]
# Upper levels set using central level and level differences values; and check they are not outwith initial ranges
if levels[1, p] + levelsdiff[p] > optparamsinit[p][1][1]:
levels[2, p] = optparamsinit[p][1][1]
else:
levels[2, p] = levels[1, p] + levelsdiff[p]
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
optparams = OrderedDict((key, list()) for key in optparams)
p = 0
for key, value in optparams.items():
for exp in range(0, N):
if OA[exp, p] == 0:
optparams[key].append(levels[0, p])
elif OA[exp, p] == 1:
optparams[key].append(levels[1, p])
elif OA[exp, p] == 2:
optparams[key].append(levels[2, p])
p += 1
return optparams, levels, levelsdiff
def calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k):
"""Calculate optimal levels from results of fitness metric by building a response table.
Args:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levels (array): Lower, central, and upper values for each parameter
levelsopt (array): Optimal level for each parameter from previous iteration
fitnessvalues (list): Values from results of fitness metric
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
Returns:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levelsopt (array): Optimal level for each parameter from previous iteration
"""
# Build a table of responses based on the results of the fitness metric
for p in range(0, k):
responses = np.zeros(3, dtype=floattype)
cnt1 = 0
cnt2 = 0
cnt3 = 0
for exp in range(1, N):
if OA[exp, p] == 0:
responses[0] += fitnessvalues[exp]
cnt1 += 1
elif OA[exp, p] == 1:
responses[1] += fitnessvalues[exp]
cnt2 += 1
elif OA[exp, p] == 2:
responses[2] += fitnessvalues[exp]
cnt3 += 1
responses[0] /= cnt1
responses[1] /= cnt2
responses[2] /= cnt3
# Calculate optimal level from table of responses
tmp = np.where(responses == np.amax(responses))[0]
# If there is more than one level found use the first
if len(tmp) > 1:
tmp = tmp[0]
levelsopt[p] = tmp
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
optparams = OrderedDict((key, list()) for key in optparams)
p = 0
for key, value in optparams.items():
optparams[key].append(levels[levelsopt[p], p])
p += 1
return optparams, levelsopt
def plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit):
"""Plot the history of fitness values and each optimised parameter values for the optimisation.
Args:
fitnessvalueshist (list): History of fitness values
optparamshist (dict): Name of parameters to optimise and history of their values
"""
import matplotlib.pyplot as plt
# Plot history of fitness values
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Fitness value'), num='History of fitness values', figsize=(20, 10), facecolor='w', edgecolor='w')
iterations = np.arange(1, len(fitnessvalueshist) + 1)
ax.plot(iterations, fitnessvalueshist, 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.grid()
# Plot history of optimisation parameters
p = 0
for key, value in optparamshist.items():
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Parameter value'), num='History of ' + key + ' parameter', figsize=(20, 10), facecolor='w', edgecolor='w')
ax.plot(iterations, optparamshist[key], 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.set_ylim(optparamsinit[p][1][0], optparamsinit[p][1][1])
ax.grid()
p += 1
plt.show()