你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
Make single output file for main and subgrids.
这个提交包含在:
@@ -98,90 +98,77 @@ __global__ void store_outputs(int NRX, int iteration, const int* __restrict__ rx
|
||||
""")
|
||||
|
||||
|
||||
def write_hdf5_outputfiles(outputfile, G):
|
||||
if G.rxs:
|
||||
write_hdf5_main_grid_outputfile(outputfile, G)
|
||||
def write_hdf5_outputfile(outputfile, G):
|
||||
"""Write an output file in HDF5 format.
|
||||
|
||||
Args:
|
||||
outputfile (str): Name of the output file.
|
||||
G (FDTDGrid): Parameters describing a grid in a model.
|
||||
"""
|
||||
|
||||
# Check for any receivers in subgrids
|
||||
sg_rxs = [True for sg in G.subgrids if sg.rxs]
|
||||
|
||||
# Create output file and write top-level meta data
|
||||
if G.rxs or sg_rxs:
|
||||
f = h5py.File(outputfile, 'w')
|
||||
f.attrs['gprMax'] = __version__
|
||||
f.attrs['Title'] = G.title
|
||||
|
||||
# Write meta data and data for main grid
|
||||
if G.rxs:
|
||||
write_grid(f, G)
|
||||
|
||||
# Write meta data and data for any subgrids
|
||||
if sg_rxs:
|
||||
write_hdf5_sub_grid_outputfile(outputfile, G)
|
||||
for sg in G.subgrids:
|
||||
grp = f.create_group('/subgrids/' + sg.name)
|
||||
write_grid(grp, sg, is_subgrid=True)
|
||||
|
||||
if G.rxs or sg_rxs:
|
||||
log.info(f'Written output file: {outputfile.name}')
|
||||
|
||||
|
||||
def write_hdf5_main_grid_outputfile(outputfile, G):
|
||||
"""Write an output file in HDF5 format.
|
||||
def write_grid(basegrp, G, is_subgrid=False):
|
||||
"""Write grid meta data and data to HDF5 group.
|
||||
|
||||
Args:
|
||||
outputfile (str): Name of the output file.
|
||||
basegrp (dict): HDF5 group.
|
||||
G (FDTDGrid): Parameters describing a grid in a model.
|
||||
is_subgrid (bool): Is grid instance the main grid or a subgrid.
|
||||
"""
|
||||
|
||||
write_data(outputfile, G)
|
||||
log.info(f'Written output file: {outputfile.name}')
|
||||
|
||||
|
||||
def write_hdf5_sub_grid_outputfile(outputfile, G):
|
||||
"""Write an output file in HDF5 format.
|
||||
|
||||
Args:
|
||||
outputfile (str): Name of the output file.
|
||||
G (FDTDGrid): Parameters describing a grid in a model.
|
||||
"""
|
||||
|
||||
stem = outputfile.stem
|
||||
suffix = outputfile.suffix
|
||||
parent = outputfile.parent
|
||||
|
||||
for sg in G.subgrids:
|
||||
# Create an outputfile for each subgrid
|
||||
fp = stem + '_' + sg.name + suffix
|
||||
fp = parent / Path(fp)
|
||||
|
||||
f = write_data(fp, sg)
|
||||
|
||||
# Write some additional meta data about the subgrid
|
||||
f.attrs['is_os_sep'] = sg.is_os_sep
|
||||
f.attrs['pml_separation'] = sg.pml_separation
|
||||
f.attrs['subgrid_pml_thickness'] = sg.pmlthickness['x0']
|
||||
f.attrs['filter'] = sg.filter
|
||||
f.attrs['ratio'] = sg.ratio
|
||||
f.attrs['interpolation'] = sg.interpolation
|
||||
|
||||
log.info(f'Written output file: {fp.name}')
|
||||
|
||||
def write_data(outputfile, G):
|
||||
"""Write an output file in HDF5 format.
|
||||
|
||||
Args:
|
||||
outputfile (str): Name of the output file.
|
||||
G (FDTDGrid): Parameters describing a grid in a model.
|
||||
|
||||
Returns:
|
||||
f (file object): File object.
|
||||
"""
|
||||
|
||||
f = h5py.File(outputfile, 'w')
|
||||
f.attrs['gprMax'] = __version__
|
||||
f.attrs['Title'] = G.title
|
||||
f.attrs['Iterations'] = G.iterations
|
||||
f.attrs['nx_ny_nz'] = (G.nx, G.ny, G.nz)
|
||||
f.attrs['dx_dy_dz'] = (G.dx, G.dy, G.dz)
|
||||
f.attrs['dt'] = G.dt
|
||||
# Write meta data for grid
|
||||
basegrp.attrs['Iterations'] = G.iterations
|
||||
basegrp.attrs['nx_ny_nz'] = (G.nx, G.ny, G.nz)
|
||||
basegrp.attrs['dx_dy_dz'] = (G.dx, G.dy, G.dz)
|
||||
basegrp.attrs['dt'] = G.dt
|
||||
nsrc = len(G.voltagesources + G.hertziandipoles + G.magneticdipoles + G.transmissionlines)
|
||||
f.attrs['nsrc'] = nsrc
|
||||
f.attrs['nrx'] = len(G.rxs)
|
||||
f.attrs['srcsteps'] = G.srcsteps
|
||||
f.attrs['rxsteps'] = G.rxsteps
|
||||
basegrp.attrs['nsrc'] = nsrc
|
||||
basegrp.attrs['nrx'] = len(G.rxs)
|
||||
basegrp.attrs['srcsteps'] = G.srcsteps
|
||||
basegrp.attrs['rxsteps'] = G.rxsteps
|
||||
|
||||
if is_subgrid:
|
||||
# Write additional meta data about subgrid
|
||||
basegrp.attrs['is_os_sep'] = G.is_os_sep
|
||||
basegrp.attrs['pml_separation'] = G.pml_separation
|
||||
basegrp.attrs['subgrid_pml_thickness'] = G.pmlthickness['x0']
|
||||
basegrp.attrs['filter'] = G.filter
|
||||
basegrp.attrs['ratio'] = G.ratio
|
||||
basegrp.attrs['interpolation'] = G.interpolation
|
||||
|
||||
# Create group for sources (except transmission lines); add type and positional data attributes
|
||||
srclist = G.voltagesources + G.hertziandipoles + G.magneticdipoles
|
||||
for srcindex, src in enumerate(srclist):
|
||||
grp = f.create_group('/srcs/src' + str(srcindex + 1))
|
||||
grp = basegrp.create_group('srcs/src' + str(srcindex + 1))
|
||||
grp.attrs['Type'] = type(src).__name__
|
||||
grp.attrs['Position'] = (src.xcoord * G.dx, src.ycoord * G.dy, src.zcoord * G.dz)
|
||||
|
||||
# Create group for transmission lines; add positional data, line resistance and
|
||||
# line discretisation attributes; write arrays for line voltages and currents
|
||||
for tlindex, tl in enumerate(G.transmissionlines):
|
||||
grp = f.create_group('/tls/tl' + str(tlindex + 1))
|
||||
grp = basegrp.create_group('tls/tl' + str(tlindex + 1))
|
||||
grp.attrs['Position'] = (tl.xcoord * G.dx, tl.ycoord * G.dy, tl.zcoord * G.dz)
|
||||
grp.attrs['Resistance'] = tl.resistance
|
||||
grp.attrs['dl'] = tl.dl
|
||||
@@ -189,17 +176,15 @@ def write_data(outputfile, G):
|
||||
grp['Vinc'] = tl.Vinc
|
||||
grp['Iinc'] = tl.Iinc
|
||||
# Save total voltage and current
|
||||
f['/tls/tl' + str(tlindex + 1) + '/Vtotal'] = tl.Vtotal
|
||||
f['/tls/tl' + str(tlindex + 1) + '/Itotal'] = tl.Itotal
|
||||
basegrp['tls/tl' + str(tlindex + 1) + '/Vtotal'] = tl.Vtotal
|
||||
basegrp['tls/tl' + str(tlindex + 1) + '/Itotal'] = tl.Itotal
|
||||
|
||||
# Create group, add positional data and write field component arrays for receivers
|
||||
for rxindex, rx in enumerate(G.rxs):
|
||||
grp = f.create_group('/rxs/rx' + str(rxindex + 1))
|
||||
grp = basegrp.create_group('rxs/rx' + str(rxindex + 1))
|
||||
if rx.ID:
|
||||
grp.attrs['Name'] = rx.ID
|
||||
grp.attrs['Position'] = (rx.xcoord * G.dx, rx.ycoord * G.dy, rx.zcoord * G.dz)
|
||||
|
||||
for output in rx.outputs:
|
||||
f['/rxs/rx' + str(rxindex + 1) + '/' + output] = rx.outputs[output]
|
||||
|
||||
return f
|
||||
basegrp['rxs/rx' + str(rxindex + 1) + '/' + output] = rx.outputs[output]
|
||||
|
@@ -35,7 +35,7 @@ import gprMax.config as config
|
||||
from .cython.yee_cell_build import build_electric_components
|
||||
from .cython.yee_cell_build import build_magnetic_components
|
||||
from .exceptions import GeneralError
|
||||
from .fields_outputs import write_hdf5_outputfiles
|
||||
from .fields_outputs import write_hdf5_outputfile
|
||||
from .grid import dispersion_analysis
|
||||
from .hash_cmds_file import parse_hash_commands
|
||||
from .materials import Material
|
||||
@@ -213,8 +213,8 @@ class ModelBuildRun:
|
||||
to file(s).
|
||||
"""
|
||||
|
||||
# Write an output file(s) in HDF5 format
|
||||
write_hdf5_outputfiles(config.get_model_config().output_file_path_ext, self.G)
|
||||
# Write an output file in HDF5 format
|
||||
write_hdf5_outputfile(config.get_model_config().output_file_path_ext, self.G)
|
||||
|
||||
# Write any snapshots to file
|
||||
if self.G.snapshots:
|
||||
|
@@ -45,195 +45,215 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
||||
|
||||
file = Path(filename)
|
||||
|
||||
# Open output file and read some attributes
|
||||
# Open output file and read iterations
|
||||
f = h5py.File(file, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
dt = f.attrs['dt']
|
||||
iterations = f.attrs['Iterations']
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
|
||||
# Paths to grid(s) to traverse for outputs
|
||||
paths = ['/']
|
||||
|
||||
# Check if any subgrids and add path(s)
|
||||
is_subgrids = "/subgrids" in f
|
||||
if is_subgrids:
|
||||
paths = paths + ['/subgrids/' + path + '/' for path in f['/subgrids'].keys()]
|
||||
|
||||
# Get number of receivers in grid(s)
|
||||
nrxs = []
|
||||
for path in paths:
|
||||
if f[path].attrs['nrx'] > 0:
|
||||
nrxs.append(f[path].attrs['nrx'])
|
||||
else:
|
||||
paths.remove(path)
|
||||
|
||||
# Check there are any receivers
|
||||
if nrx == 0:
|
||||
if not paths:
|
||||
raise CmdInputError(f'No receivers found in {file}')
|
||||
|
||||
# Check for single output component when doing a FFT
|
||||
if fft:
|
||||
if not len(outputs) == 1:
|
||||
raise CmdInputError('A single output must be specified when using the -fft option')
|
||||
# Loop through all grids
|
||||
for path in paths:
|
||||
iterations = f[path].attrs['Iterations']
|
||||
nrx = f[path].attrs['nrx']
|
||||
dt = f[path].attrs['dt']
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
|
||||
# New plot for each receiver
|
||||
for rx in range(1, nrx + 1):
|
||||
path = '/rxs/rx' + str(rx) + '/'
|
||||
availableoutputs = list(f[path].keys())
|
||||
# Check for single output component when doing a FFT
|
||||
if fft:
|
||||
if not len(outputs) == 1:
|
||||
raise CmdInputError('A single output must be specified when using the -fft option')
|
||||
|
||||
# If only a single output is required, create one subplot
|
||||
if len(outputs) == 1:
|
||||
# New plot for each receiver
|
||||
for rx in range(1, nrx + 1):
|
||||
rxpath = path + 'rxs/rx' + str(rx) + '/'
|
||||
availableoutputs = list(f[rxpath].keys())
|
||||
|
||||
# Check for polarity of output and if requested output is in file
|
||||
if outputs[0][-1] == '-':
|
||||
polarity = -1
|
||||
outputtext = '-' + outputs[0][0:-1]
|
||||
output = outputs[0][0:-1]
|
||||
else:
|
||||
polarity = 1
|
||||
outputtext = outputs[0]
|
||||
output = outputs[0]
|
||||
# If only a single output is required, create one subplot
|
||||
if len(outputs) == 1:
|
||||
|
||||
if output not in availableoutputs:
|
||||
raise CmdInputError(f"{output} output requested to plot, but the available output for receiver 1 is {', '.join(availableoutputs)}")
|
||||
|
||||
outputdata = f[path + output][:] * polarity
|
||||
|
||||
# Plotting if FFT required
|
||||
if fft:
|
||||
# FFT
|
||||
freqs, power = fft_power(outputdata, dt)
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
|
||||
# Set plotting range to -60dB from maximum power or 4 times
|
||||
# frequency at maximum power
|
||||
try:
|
||||
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
||||
except:
|
||||
pltrange = freqmaxpower * 4
|
||||
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
# Plot time history of output component
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx),
|
||||
figsize=(20, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
||||
ax1.set_xlim([0, np.amax(time)])
|
||||
ax1.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange],
|
||||
power[pltrange], '-.',
|
||||
use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||||
ax2.set_xlabel('Frequency [Hz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
ax2.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Change colours and labels for magnetic field components or currents
|
||||
if 'H' in outputs[0]:
|
||||
plt.setp(line1, color='g')
|
||||
plt.setp(line2, color='g')
|
||||
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
elif 'I' in outputs[0]:
|
||||
plt.setp(line1, color='b')
|
||||
plt.setp(line2, color='b')
|
||||
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
|
||||
plt.show()
|
||||
|
||||
# Plotting if no FFT required
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]',
|
||||
ylabel=outputtext + ' field strength [V/m]'),
|
||||
num='rx' + str(rx), figsize=(20, 10),
|
||||
facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
# ax.set_ylim([-15, 20])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
if 'H' in output:
|
||||
plt.setp(line, color='g')
|
||||
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
||||
elif 'I' in output:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
||||
|
||||
# If multiple outputs required, create all nine subplots and populate only the specified ones
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'),
|
||||
num='rx' + str(rx), figsize=(20, 10),
|
||||
facecolor='w', edgecolor='w')
|
||||
if len(outputs) == 9:
|
||||
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
||||
else:
|
||||
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
||||
|
||||
for output in outputs:
|
||||
# Check for polarity of output and if requested output is in file
|
||||
if output[-1] == 'm':
|
||||
if outputs[0][-1] == '-':
|
||||
polarity = -1
|
||||
outputtext = '-' + output[0:-1]
|
||||
output = output[0:-1]
|
||||
outputtext = '-' + outputs[0][0:-1]
|
||||
output = outputs[0][0:-1]
|
||||
else:
|
||||
polarity = 1
|
||||
outputtext = output
|
||||
outputtext = outputs[0]
|
||||
output = outputs[0]
|
||||
|
||||
# Check if requested output is in file
|
||||
if output not in availableoutputs:
|
||||
raise CmdInputError(f"Output(s) requested to plot: {', '.join(outputs)}, but available output(s) for receiver {rx} in the file: {', '.join(availableoutputs)}")
|
||||
raise CmdInputError(f"{output} output requested to plot, but the available output for receiver 1 is {', '.join(availableoutputs)}")
|
||||
|
||||
outputdata = f[path + output][:] * polarity
|
||||
outputdata = f[rxpath + output][:] * polarity
|
||||
|
||||
if output == 'Ex':
|
||||
ax = plt.subplot(gs[0, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ey':
|
||||
ax = plt.subplot(gs[1, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ez':
|
||||
ax = plt.subplot(gs[2, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Hx':
|
||||
ax = plt.subplot(gs[0, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hy':
|
||||
ax = plt.subplot(gs[1, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hz':
|
||||
ax = plt.subplot(gs[2, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Ix':
|
||||
ax = plt.subplot(gs[0, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iy':
|
||||
ax = plt.subplot(gs[1, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iz':
|
||||
ax = plt.subplot(gs[2, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
for ax in fig.axes:
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
# Plotting if FFT required
|
||||
if fft:
|
||||
# FFT
|
||||
freqs, power = fft_power(outputdata, dt)
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
savename = file.stem + '_rx' + str(rx)
|
||||
savename = file.parent / savename
|
||||
# fig.savefig(savename.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(savename.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# Set plotting range to -60dB from maximum power or 4 times
|
||||
# frequency at maximum power
|
||||
try:
|
||||
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
||||
except:
|
||||
pltrange = freqmaxpower * 4
|
||||
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
# Plot time history of output component
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
||||
ax1.set_xlim([0, np.amax(time)])
|
||||
ax1.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange],
|
||||
power[pltrange], '-.',
|
||||
use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||||
ax2.set_xlabel('Frequency [Hz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
ax2.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Change colours and labels for magnetic field components or currents
|
||||
if 'H' in outputs[0]:
|
||||
plt.setp(line1, color='g')
|
||||
plt.setp(line2, color='g')
|
||||
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
elif 'I' in outputs[0]:
|
||||
plt.setp(line1, color='b')
|
||||
plt.setp(line2, color='b')
|
||||
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
|
||||
plt.show()
|
||||
|
||||
# Plotting if no FFT required
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]',
|
||||
ylabel=outputtext + ' field strength [V/m]'),
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
# ax.set_ylim([-15, 20])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
if 'H' in output:
|
||||
plt.setp(line, color='g')
|
||||
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
||||
elif 'I' in output:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
||||
|
||||
# If multiple outputs required, create all nine subplots and populate only the specified ones
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'),
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
if len(outputs) == 9:
|
||||
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
||||
else:
|
||||
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
||||
|
||||
for output in outputs:
|
||||
# Check for polarity of output and if requested output is in file
|
||||
if output[-1] == 'm':
|
||||
polarity = -1
|
||||
outputtext = '-' + output[0:-1]
|
||||
output = output[0:-1]
|
||||
else:
|
||||
polarity = 1
|
||||
outputtext = output
|
||||
|
||||
# Check if requested output is in file
|
||||
if output not in availableoutputs:
|
||||
raise CmdInputError(f"Output(s) requested to plot: {', '.join(outputs)}, but available output(s) for receiver {rx} in the file: {', '.join(availableoutputs)}")
|
||||
|
||||
outputdata = f[rxpath + output][:] * polarity
|
||||
|
||||
if output == 'Ex':
|
||||
ax = plt.subplot(gs[0, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ey':
|
||||
ax = plt.subplot(gs[1, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ez':
|
||||
ax = plt.subplot(gs[2, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Hx':
|
||||
ax = plt.subplot(gs[0, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hy':
|
||||
ax = plt.subplot(gs[1, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hz':
|
||||
ax = plt.subplot(gs[2, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Ix':
|
||||
ax = plt.subplot(gs[0, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iy':
|
||||
ax = plt.subplot(gs[1, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iz':
|
||||
ax = plt.subplot(gs[2, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
for ax in fig.axes:
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
savename = file.stem + '_rx' + str(rx)
|
||||
savename = file.parent / savename
|
||||
# fig.savefig(savename.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(savename.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
f.close()
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户