你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
Make single output file for main and subgrids.
这个提交包含在:
@@ -98,90 +98,77 @@ __global__ void store_outputs(int NRX, int iteration, const int* __restrict__ rx
|
|||||||
""")
|
""")
|
||||||
|
|
||||||
|
|
||||||
def write_hdf5_outputfiles(outputfile, G):
|
def write_hdf5_outputfile(outputfile, G):
|
||||||
if G.rxs:
|
"""Write an output file in HDF5 format.
|
||||||
write_hdf5_main_grid_outputfile(outputfile, G)
|
|
||||||
|
Args:
|
||||||
|
outputfile (str): Name of the output file.
|
||||||
|
G (FDTDGrid): Parameters describing a grid in a model.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Check for any receivers in subgrids
|
||||||
sg_rxs = [True for sg in G.subgrids if sg.rxs]
|
sg_rxs = [True for sg in G.subgrids if sg.rxs]
|
||||||
|
|
||||||
|
# Create output file and write top-level meta data
|
||||||
|
if G.rxs or sg_rxs:
|
||||||
|
f = h5py.File(outputfile, 'w')
|
||||||
|
f.attrs['gprMax'] = __version__
|
||||||
|
f.attrs['Title'] = G.title
|
||||||
|
|
||||||
|
# Write meta data and data for main grid
|
||||||
|
if G.rxs:
|
||||||
|
write_grid(f, G)
|
||||||
|
|
||||||
|
# Write meta data and data for any subgrids
|
||||||
if sg_rxs:
|
if sg_rxs:
|
||||||
write_hdf5_sub_grid_outputfile(outputfile, G)
|
for sg in G.subgrids:
|
||||||
|
grp = f.create_group('/subgrids/' + sg.name)
|
||||||
|
write_grid(grp, sg, is_subgrid=True)
|
||||||
|
|
||||||
|
if G.rxs or sg_rxs:
|
||||||
|
log.info(f'Written output file: {outputfile.name}')
|
||||||
|
|
||||||
|
|
||||||
def write_hdf5_main_grid_outputfile(outputfile, G):
|
def write_grid(basegrp, G, is_subgrid=False):
|
||||||
"""Write an output file in HDF5 format.
|
"""Write grid meta data and data to HDF5 group.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
outputfile (str): Name of the output file.
|
basegrp (dict): HDF5 group.
|
||||||
G (FDTDGrid): Parameters describing a grid in a model.
|
G (FDTDGrid): Parameters describing a grid in a model.
|
||||||
|
is_subgrid (bool): Is grid instance the main grid or a subgrid.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
write_data(outputfile, G)
|
# Write meta data for grid
|
||||||
log.info(f'Written output file: {outputfile.name}')
|
basegrp.attrs['Iterations'] = G.iterations
|
||||||
|
basegrp.attrs['nx_ny_nz'] = (G.nx, G.ny, G.nz)
|
||||||
|
basegrp.attrs['dx_dy_dz'] = (G.dx, G.dy, G.dz)
|
||||||
def write_hdf5_sub_grid_outputfile(outputfile, G):
|
basegrp.attrs['dt'] = G.dt
|
||||||
"""Write an output file in HDF5 format.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
outputfile (str): Name of the output file.
|
|
||||||
G (FDTDGrid): Parameters describing a grid in a model.
|
|
||||||
"""
|
|
||||||
|
|
||||||
stem = outputfile.stem
|
|
||||||
suffix = outputfile.suffix
|
|
||||||
parent = outputfile.parent
|
|
||||||
|
|
||||||
for sg in G.subgrids:
|
|
||||||
# Create an outputfile for each subgrid
|
|
||||||
fp = stem + '_' + sg.name + suffix
|
|
||||||
fp = parent / Path(fp)
|
|
||||||
|
|
||||||
f = write_data(fp, sg)
|
|
||||||
|
|
||||||
# Write some additional meta data about the subgrid
|
|
||||||
f.attrs['is_os_sep'] = sg.is_os_sep
|
|
||||||
f.attrs['pml_separation'] = sg.pml_separation
|
|
||||||
f.attrs['subgrid_pml_thickness'] = sg.pmlthickness['x0']
|
|
||||||
f.attrs['filter'] = sg.filter
|
|
||||||
f.attrs['ratio'] = sg.ratio
|
|
||||||
f.attrs['interpolation'] = sg.interpolation
|
|
||||||
|
|
||||||
log.info(f'Written output file: {fp.name}')
|
|
||||||
|
|
||||||
def write_data(outputfile, G):
|
|
||||||
"""Write an output file in HDF5 format.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
outputfile (str): Name of the output file.
|
|
||||||
G (FDTDGrid): Parameters describing a grid in a model.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
f (file object): File object.
|
|
||||||
"""
|
|
||||||
|
|
||||||
f = h5py.File(outputfile, 'w')
|
|
||||||
f.attrs['gprMax'] = __version__
|
|
||||||
f.attrs['Title'] = G.title
|
|
||||||
f.attrs['Iterations'] = G.iterations
|
|
||||||
f.attrs['nx_ny_nz'] = (G.nx, G.ny, G.nz)
|
|
||||||
f.attrs['dx_dy_dz'] = (G.dx, G.dy, G.dz)
|
|
||||||
f.attrs['dt'] = G.dt
|
|
||||||
nsrc = len(G.voltagesources + G.hertziandipoles + G.magneticdipoles + G.transmissionlines)
|
nsrc = len(G.voltagesources + G.hertziandipoles + G.magneticdipoles + G.transmissionlines)
|
||||||
f.attrs['nsrc'] = nsrc
|
basegrp.attrs['nsrc'] = nsrc
|
||||||
f.attrs['nrx'] = len(G.rxs)
|
basegrp.attrs['nrx'] = len(G.rxs)
|
||||||
f.attrs['srcsteps'] = G.srcsteps
|
basegrp.attrs['srcsteps'] = G.srcsteps
|
||||||
f.attrs['rxsteps'] = G.rxsteps
|
basegrp.attrs['rxsteps'] = G.rxsteps
|
||||||
|
|
||||||
|
if is_subgrid:
|
||||||
|
# Write additional meta data about subgrid
|
||||||
|
basegrp.attrs['is_os_sep'] = G.is_os_sep
|
||||||
|
basegrp.attrs['pml_separation'] = G.pml_separation
|
||||||
|
basegrp.attrs['subgrid_pml_thickness'] = G.pmlthickness['x0']
|
||||||
|
basegrp.attrs['filter'] = G.filter
|
||||||
|
basegrp.attrs['ratio'] = G.ratio
|
||||||
|
basegrp.attrs['interpolation'] = G.interpolation
|
||||||
|
|
||||||
# Create group for sources (except transmission lines); add type and positional data attributes
|
# Create group for sources (except transmission lines); add type and positional data attributes
|
||||||
srclist = G.voltagesources + G.hertziandipoles + G.magneticdipoles
|
srclist = G.voltagesources + G.hertziandipoles + G.magneticdipoles
|
||||||
for srcindex, src in enumerate(srclist):
|
for srcindex, src in enumerate(srclist):
|
||||||
grp = f.create_group('/srcs/src' + str(srcindex + 1))
|
grp = basegrp.create_group('srcs/src' + str(srcindex + 1))
|
||||||
grp.attrs['Type'] = type(src).__name__
|
grp.attrs['Type'] = type(src).__name__
|
||||||
grp.attrs['Position'] = (src.xcoord * G.dx, src.ycoord * G.dy, src.zcoord * G.dz)
|
grp.attrs['Position'] = (src.xcoord * G.dx, src.ycoord * G.dy, src.zcoord * G.dz)
|
||||||
|
|
||||||
# Create group for transmission lines; add positional data, line resistance and
|
# Create group for transmission lines; add positional data, line resistance and
|
||||||
# line discretisation attributes; write arrays for line voltages and currents
|
# line discretisation attributes; write arrays for line voltages and currents
|
||||||
for tlindex, tl in enumerate(G.transmissionlines):
|
for tlindex, tl in enumerate(G.transmissionlines):
|
||||||
grp = f.create_group('/tls/tl' + str(tlindex + 1))
|
grp = basegrp.create_group('tls/tl' + str(tlindex + 1))
|
||||||
grp.attrs['Position'] = (tl.xcoord * G.dx, tl.ycoord * G.dy, tl.zcoord * G.dz)
|
grp.attrs['Position'] = (tl.xcoord * G.dx, tl.ycoord * G.dy, tl.zcoord * G.dz)
|
||||||
grp.attrs['Resistance'] = tl.resistance
|
grp.attrs['Resistance'] = tl.resistance
|
||||||
grp.attrs['dl'] = tl.dl
|
grp.attrs['dl'] = tl.dl
|
||||||
@@ -189,17 +176,15 @@ def write_data(outputfile, G):
|
|||||||
grp['Vinc'] = tl.Vinc
|
grp['Vinc'] = tl.Vinc
|
||||||
grp['Iinc'] = tl.Iinc
|
grp['Iinc'] = tl.Iinc
|
||||||
# Save total voltage and current
|
# Save total voltage and current
|
||||||
f['/tls/tl' + str(tlindex + 1) + '/Vtotal'] = tl.Vtotal
|
basegrp['tls/tl' + str(tlindex + 1) + '/Vtotal'] = tl.Vtotal
|
||||||
f['/tls/tl' + str(tlindex + 1) + '/Itotal'] = tl.Itotal
|
basegrp['tls/tl' + str(tlindex + 1) + '/Itotal'] = tl.Itotal
|
||||||
|
|
||||||
# Create group, add positional data and write field component arrays for receivers
|
# Create group, add positional data and write field component arrays for receivers
|
||||||
for rxindex, rx in enumerate(G.rxs):
|
for rxindex, rx in enumerate(G.rxs):
|
||||||
grp = f.create_group('/rxs/rx' + str(rxindex + 1))
|
grp = basegrp.create_group('rxs/rx' + str(rxindex + 1))
|
||||||
if rx.ID:
|
if rx.ID:
|
||||||
grp.attrs['Name'] = rx.ID
|
grp.attrs['Name'] = rx.ID
|
||||||
grp.attrs['Position'] = (rx.xcoord * G.dx, rx.ycoord * G.dy, rx.zcoord * G.dz)
|
grp.attrs['Position'] = (rx.xcoord * G.dx, rx.ycoord * G.dy, rx.zcoord * G.dz)
|
||||||
|
|
||||||
for output in rx.outputs:
|
for output in rx.outputs:
|
||||||
f['/rxs/rx' + str(rxindex + 1) + '/' + output] = rx.outputs[output]
|
basegrp['rxs/rx' + str(rxindex + 1) + '/' + output] = rx.outputs[output]
|
||||||
|
|
||||||
return f
|
|
||||||
|
@@ -35,7 +35,7 @@ import gprMax.config as config
|
|||||||
from .cython.yee_cell_build import build_electric_components
|
from .cython.yee_cell_build import build_electric_components
|
||||||
from .cython.yee_cell_build import build_magnetic_components
|
from .cython.yee_cell_build import build_magnetic_components
|
||||||
from .exceptions import GeneralError
|
from .exceptions import GeneralError
|
||||||
from .fields_outputs import write_hdf5_outputfiles
|
from .fields_outputs import write_hdf5_outputfile
|
||||||
from .grid import dispersion_analysis
|
from .grid import dispersion_analysis
|
||||||
from .hash_cmds_file import parse_hash_commands
|
from .hash_cmds_file import parse_hash_commands
|
||||||
from .materials import Material
|
from .materials import Material
|
||||||
@@ -213,8 +213,8 @@ class ModelBuildRun:
|
|||||||
to file(s).
|
to file(s).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Write an output file(s) in HDF5 format
|
# Write an output file in HDF5 format
|
||||||
write_hdf5_outputfiles(config.get_model_config().output_file_path_ext, self.G)
|
write_hdf5_outputfile(config.get_model_config().output_file_path_ext, self.G)
|
||||||
|
|
||||||
# Write any snapshots to file
|
# Write any snapshots to file
|
||||||
if self.G.snapshots:
|
if self.G.snapshots:
|
||||||
|
@@ -45,195 +45,215 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
|||||||
|
|
||||||
file = Path(filename)
|
file = Path(filename)
|
||||||
|
|
||||||
# Open output file and read some attributes
|
# Open output file and read iterations
|
||||||
f = h5py.File(file, 'r')
|
f = h5py.File(file, 'r')
|
||||||
nrx = f.attrs['nrx']
|
|
||||||
dt = f.attrs['dt']
|
# Paths to grid(s) to traverse for outputs
|
||||||
iterations = f.attrs['Iterations']
|
paths = ['/']
|
||||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
|
||||||
|
# Check if any subgrids and add path(s)
|
||||||
|
is_subgrids = "/subgrids" in f
|
||||||
|
if is_subgrids:
|
||||||
|
paths = paths + ['/subgrids/' + path + '/' for path in f['/subgrids'].keys()]
|
||||||
|
|
||||||
|
# Get number of receivers in grid(s)
|
||||||
|
nrxs = []
|
||||||
|
for path in paths:
|
||||||
|
if f[path].attrs['nrx'] > 0:
|
||||||
|
nrxs.append(f[path].attrs['nrx'])
|
||||||
|
else:
|
||||||
|
paths.remove(path)
|
||||||
|
|
||||||
# Check there are any receivers
|
# Check there are any receivers
|
||||||
if nrx == 0:
|
if not paths:
|
||||||
raise CmdInputError(f'No receivers found in {file}')
|
raise CmdInputError(f'No receivers found in {file}')
|
||||||
|
|
||||||
# Check for single output component when doing a FFT
|
# Loop through all grids
|
||||||
if fft:
|
for path in paths:
|
||||||
if not len(outputs) == 1:
|
iterations = f[path].attrs['Iterations']
|
||||||
raise CmdInputError('A single output must be specified when using the -fft option')
|
nrx = f[path].attrs['nrx']
|
||||||
|
dt = f[path].attrs['dt']
|
||||||
|
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||||
|
|
||||||
# New plot for each receiver
|
# Check for single output component when doing a FFT
|
||||||
for rx in range(1, nrx + 1):
|
if fft:
|
||||||
path = '/rxs/rx' + str(rx) + '/'
|
if not len(outputs) == 1:
|
||||||
availableoutputs = list(f[path].keys())
|
raise CmdInputError('A single output must be specified when using the -fft option')
|
||||||
|
|
||||||
# If only a single output is required, create one subplot
|
# New plot for each receiver
|
||||||
if len(outputs) == 1:
|
for rx in range(1, nrx + 1):
|
||||||
|
rxpath = path + 'rxs/rx' + str(rx) + '/'
|
||||||
|
availableoutputs = list(f[rxpath].keys())
|
||||||
|
|
||||||
# Check for polarity of output and if requested output is in file
|
# If only a single output is required, create one subplot
|
||||||
if outputs[0][-1] == '-':
|
if len(outputs) == 1:
|
||||||
polarity = -1
|
|
||||||
outputtext = '-' + outputs[0][0:-1]
|
|
||||||
output = outputs[0][0:-1]
|
|
||||||
else:
|
|
||||||
polarity = 1
|
|
||||||
outputtext = outputs[0]
|
|
||||||
output = outputs[0]
|
|
||||||
|
|
||||||
if output not in availableoutputs:
|
|
||||||
raise CmdInputError(f"{output} output requested to plot, but the available output for receiver 1 is {', '.join(availableoutputs)}")
|
|
||||||
|
|
||||||
outputdata = f[path + output][:] * polarity
|
|
||||||
|
|
||||||
# Plotting if FFT required
|
|
||||||
if fft:
|
|
||||||
# FFT
|
|
||||||
freqs, power = fft_power(outputdata, dt)
|
|
||||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
|
||||||
|
|
||||||
# Set plotting range to -60dB from maximum power or 4 times
|
|
||||||
# frequency at maximum power
|
|
||||||
try:
|
|
||||||
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
|
||||||
except:
|
|
||||||
pltrange = freqmaxpower * 4
|
|
||||||
|
|
||||||
pltrange = np.s_[0:pltrange]
|
|
||||||
|
|
||||||
# Plot time history of output component
|
|
||||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx),
|
|
||||||
figsize=(20, 10), facecolor='w',
|
|
||||||
edgecolor='w')
|
|
||||||
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
||||||
ax1.set_xlabel('Time [s]')
|
|
||||||
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
|
||||||
ax1.set_xlim([0, np.amax(time)])
|
|
||||||
ax1.grid(which='both', axis='both', linestyle='-.')
|
|
||||||
|
|
||||||
# Plot frequency spectra
|
|
||||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange],
|
|
||||||
power[pltrange], '-.',
|
|
||||||
use_line_collection=True)
|
|
||||||
plt.setp(baseline, 'linewidth', 0)
|
|
||||||
plt.setp(stemlines, 'color', 'r')
|
|
||||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
||||||
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
|
||||||
ax2.set_xlabel('Frequency [Hz]')
|
|
||||||
ax2.set_ylabel('Power [dB]')
|
|
||||||
ax2.grid(which='both', axis='both', linestyle='-.')
|
|
||||||
|
|
||||||
# Change colours and labels for magnetic field components or currents
|
|
||||||
if 'H' in outputs[0]:
|
|
||||||
plt.setp(line1, color='g')
|
|
||||||
plt.setp(line2, color='g')
|
|
||||||
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
|
||||||
plt.setp(stemlines, 'color', 'g')
|
|
||||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
|
||||||
elif 'I' in outputs[0]:
|
|
||||||
plt.setp(line1, color='b')
|
|
||||||
plt.setp(line2, color='b')
|
|
||||||
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
|
||||||
plt.setp(stemlines, 'color', 'b')
|
|
||||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
|
||||||
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
# Plotting if no FFT required
|
|
||||||
else:
|
|
||||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]',
|
|
||||||
ylabel=outputtext + ' field strength [V/m]'),
|
|
||||||
num='rx' + str(rx), figsize=(20, 10),
|
|
||||||
facecolor='w', edgecolor='w')
|
|
||||||
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
||||||
ax.set_xlim([0, np.amax(time)])
|
|
||||||
# ax.set_ylim([-15, 20])
|
|
||||||
ax.grid(which='both', axis='both', linestyle='-.')
|
|
||||||
|
|
||||||
if 'H' in output:
|
|
||||||
plt.setp(line, color='g')
|
|
||||||
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
|
||||||
elif 'I' in output:
|
|
||||||
plt.setp(line, color='b')
|
|
||||||
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
|
||||||
|
|
||||||
# If multiple outputs required, create all nine subplots and populate only the specified ones
|
|
||||||
else:
|
|
||||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'),
|
|
||||||
num='rx' + str(rx), figsize=(20, 10),
|
|
||||||
facecolor='w', edgecolor='w')
|
|
||||||
if len(outputs) == 9:
|
|
||||||
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
|
||||||
else:
|
|
||||||
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
|
||||||
|
|
||||||
for output in outputs:
|
|
||||||
# Check for polarity of output and if requested output is in file
|
# Check for polarity of output and if requested output is in file
|
||||||
if output[-1] == 'm':
|
if outputs[0][-1] == '-':
|
||||||
polarity = -1
|
polarity = -1
|
||||||
outputtext = '-' + output[0:-1]
|
outputtext = '-' + outputs[0][0:-1]
|
||||||
output = output[0:-1]
|
output = outputs[0][0:-1]
|
||||||
else:
|
else:
|
||||||
polarity = 1
|
polarity = 1
|
||||||
outputtext = output
|
outputtext = outputs[0]
|
||||||
|
output = outputs[0]
|
||||||
|
|
||||||
# Check if requested output is in file
|
|
||||||
if output not in availableoutputs:
|
if output not in availableoutputs:
|
||||||
raise CmdInputError(f"Output(s) requested to plot: {', '.join(outputs)}, but available output(s) for receiver {rx} in the file: {', '.join(availableoutputs)}")
|
raise CmdInputError(f"{output} output requested to plot, but the available output for receiver 1 is {', '.join(availableoutputs)}")
|
||||||
|
|
||||||
outputdata = f[path + output][:] * polarity
|
outputdata = f[rxpath + output][:] * polarity
|
||||||
|
|
||||||
if output == 'Ex':
|
# Plotting if FFT required
|
||||||
ax = plt.subplot(gs[0, 0])
|
if fft:
|
||||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
# FFT
|
||||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
freqs, power = fft_power(outputdata, dt)
|
||||||
# ax.set_ylim([-15, 20])
|
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||||
elif output == 'Ey':
|
|
||||||
ax = plt.subplot(gs[1, 0])
|
|
||||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
|
||||||
# ax.set_ylim([-15, 20])
|
|
||||||
elif output == 'Ez':
|
|
||||||
ax = plt.subplot(gs[2, 0])
|
|
||||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
|
||||||
# ax.set_ylim([-15, 20])
|
|
||||||
elif output == 'Hx':
|
|
||||||
ax = plt.subplot(gs[0, 1])
|
|
||||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
|
||||||
# ax.set_ylim([-0.03, 0.03])
|
|
||||||
elif output == 'Hy':
|
|
||||||
ax = plt.subplot(gs[1, 1])
|
|
||||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
|
||||||
# ax.set_ylim([-0.03, 0.03])
|
|
||||||
elif output == 'Hz':
|
|
||||||
ax = plt.subplot(gs[2, 1])
|
|
||||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
|
||||||
# ax.set_ylim([-0.03, 0.03])
|
|
||||||
elif output == 'Ix':
|
|
||||||
ax = plt.subplot(gs[0, 2])
|
|
||||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', current [A]')
|
|
||||||
elif output == 'Iy':
|
|
||||||
ax = plt.subplot(gs[1, 2])
|
|
||||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', current [A]')
|
|
||||||
elif output == 'Iz':
|
|
||||||
ax = plt.subplot(gs[2, 2])
|
|
||||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
|
||||||
ax.set_ylabel(outputtext + ', current [A]')
|
|
||||||
for ax in fig.axes:
|
|
||||||
ax.set_xlim([0, np.amax(time)])
|
|
||||||
ax.grid(which='both', axis='both', linestyle='-.')
|
|
||||||
|
|
||||||
# Save a PDF/PNG of the figure
|
# Set plotting range to -60dB from maximum power or 4 times
|
||||||
savename = file.stem + '_rx' + str(rx)
|
# frequency at maximum power
|
||||||
savename = file.parent / savename
|
try:
|
||||||
# fig.savefig(savename.with_suffix('.pdf'), dpi=None, format='pdf',
|
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
||||||
# bbox_inches='tight', pad_inches=0.1)
|
except:
|
||||||
# fig.savefig(savename.with_suffix('.png'), dpi=150, format='png',
|
pltrange = freqmaxpower * 4
|
||||||
# bbox_inches='tight', pad_inches=0.1)
|
|
||||||
|
pltrange = np.s_[0:pltrange]
|
||||||
|
|
||||||
|
# Plot time history of output component
|
||||||
|
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,
|
||||||
|
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||||
|
figsize=(20, 10), facecolor='w',
|
||||||
|
edgecolor='w')
|
||||||
|
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||||
|
ax1.set_xlabel('Time [s]')
|
||||||
|
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
||||||
|
ax1.set_xlim([0, np.amax(time)])
|
||||||
|
ax1.grid(which='both', axis='both', linestyle='-.')
|
||||||
|
|
||||||
|
# Plot frequency spectra
|
||||||
|
markerline, stemlines, baseline = ax2.stem(freqs[pltrange],
|
||||||
|
power[pltrange], '-.',
|
||||||
|
use_line_collection=True)
|
||||||
|
plt.setp(baseline, 'linewidth', 0)
|
||||||
|
plt.setp(stemlines, 'color', 'r')
|
||||||
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||||
|
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||||||
|
ax2.set_xlabel('Frequency [Hz]')
|
||||||
|
ax2.set_ylabel('Power [dB]')
|
||||||
|
ax2.grid(which='both', axis='both', linestyle='-.')
|
||||||
|
|
||||||
|
# Change colours and labels for magnetic field components or currents
|
||||||
|
if 'H' in outputs[0]:
|
||||||
|
plt.setp(line1, color='g')
|
||||||
|
plt.setp(line2, color='g')
|
||||||
|
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
||||||
|
plt.setp(stemlines, 'color', 'g')
|
||||||
|
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||||
|
elif 'I' in outputs[0]:
|
||||||
|
plt.setp(line1, color='b')
|
||||||
|
plt.setp(line2, color='b')
|
||||||
|
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
||||||
|
plt.setp(stemlines, 'color', 'b')
|
||||||
|
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Plotting if no FFT required
|
||||||
|
else:
|
||||||
|
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]',
|
||||||
|
ylabel=outputtext + ' field strength [V/m]'),
|
||||||
|
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||||
|
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
|
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||||
|
ax.set_xlim([0, np.amax(time)])
|
||||||
|
# ax.set_ylim([-15, 20])
|
||||||
|
ax.grid(which='both', axis='both', linestyle='-.')
|
||||||
|
|
||||||
|
if 'H' in output:
|
||||||
|
plt.setp(line, color='g')
|
||||||
|
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
||||||
|
elif 'I' in output:
|
||||||
|
plt.setp(line, color='b')
|
||||||
|
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
||||||
|
|
||||||
|
# If multiple outputs required, create all nine subplots and populate only the specified ones
|
||||||
|
else:
|
||||||
|
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'),
|
||||||
|
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||||
|
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
|
if len(outputs) == 9:
|
||||||
|
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
||||||
|
else:
|
||||||
|
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
||||||
|
|
||||||
|
for output in outputs:
|
||||||
|
# Check for polarity of output and if requested output is in file
|
||||||
|
if output[-1] == 'm':
|
||||||
|
polarity = -1
|
||||||
|
outputtext = '-' + output[0:-1]
|
||||||
|
output = output[0:-1]
|
||||||
|
else:
|
||||||
|
polarity = 1
|
||||||
|
outputtext = output
|
||||||
|
|
||||||
|
# Check if requested output is in file
|
||||||
|
if output not in availableoutputs:
|
||||||
|
raise CmdInputError(f"Output(s) requested to plot: {', '.join(outputs)}, but available output(s) for receiver {rx} in the file: {', '.join(availableoutputs)}")
|
||||||
|
|
||||||
|
outputdata = f[rxpath + output][:] * polarity
|
||||||
|
|
||||||
|
if output == 'Ex':
|
||||||
|
ax = plt.subplot(gs[0, 0])
|
||||||
|
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||||
|
# ax.set_ylim([-15, 20])
|
||||||
|
elif output == 'Ey':
|
||||||
|
ax = plt.subplot(gs[1, 0])
|
||||||
|
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||||
|
# ax.set_ylim([-15, 20])
|
||||||
|
elif output == 'Ez':
|
||||||
|
ax = plt.subplot(gs[2, 0])
|
||||||
|
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||||
|
# ax.set_ylim([-15, 20])
|
||||||
|
elif output == 'Hx':
|
||||||
|
ax = plt.subplot(gs[0, 1])
|
||||||
|
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||||
|
# ax.set_ylim([-0.03, 0.03])
|
||||||
|
elif output == 'Hy':
|
||||||
|
ax = plt.subplot(gs[1, 1])
|
||||||
|
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||||
|
# ax.set_ylim([-0.03, 0.03])
|
||||||
|
elif output == 'Hz':
|
||||||
|
ax = plt.subplot(gs[2, 1])
|
||||||
|
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||||
|
# ax.set_ylim([-0.03, 0.03])
|
||||||
|
elif output == 'Ix':
|
||||||
|
ax = plt.subplot(gs[0, 2])
|
||||||
|
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', current [A]')
|
||||||
|
elif output == 'Iy':
|
||||||
|
ax = plt.subplot(gs[1, 2])
|
||||||
|
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', current [A]')
|
||||||
|
elif output == 'Iz':
|
||||||
|
ax = plt.subplot(gs[2, 2])
|
||||||
|
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||||
|
ax.set_ylabel(outputtext + ', current [A]')
|
||||||
|
for ax in fig.axes:
|
||||||
|
ax.set_xlim([0, np.amax(time)])
|
||||||
|
ax.grid(which='both', axis='both', linestyle='-.')
|
||||||
|
|
||||||
|
# Save a PDF/PNG of the figure
|
||||||
|
savename = file.stem + '_rx' + str(rx)
|
||||||
|
savename = file.parent / savename
|
||||||
|
# fig.savefig(savename.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||||
|
# bbox_inches='tight', pad_inches=0.1)
|
||||||
|
# fig.savefig(savename.with_suffix('.png'), dpi=150, format='png',
|
||||||
|
# bbox_inches='tight', pad_inches=0.1)
|
||||||
|
|
||||||
f.close()
|
f.close()
|
||||||
|
|
||||||
|
在新工单中引用
屏蔽一个用户