add description of examples in Readme file

这个提交包含在:
majsylw
2021-08-09 08:55:45 +02:00
父节点 6f33c8710f
当前提交 6aef058949
共有 4 个文件被更改,包括 70 次插入36 次删除

查看文件

@@ -286,13 +286,13 @@ class Relaxation(object):
ax = fig.add_subplot(gs[1])
ax.grid(b=True, which="major", linewidth=0.2, linestyle="--")
ax.semilogx(self.freq * 1e-6, (rl_exp - self.rl)/self.rl * 100, "b-", linewidth=2.0,
ax.semilogx(self.freq * 1e-6, (rl_exp - self.rl)/(self.rl + 1), "b-", linewidth=2.0,
label="Real part")
ax.semilogx(self.freq * 1e-6, (-im_exp + self.im)/self.rl * 100, "k-", linewidth=2.0,
ax.semilogx(self.freq * 1e-6, (-im_exp + self.im)/(self.im + 1), "k-", linewidth=2.0,
label="Imaginary part")
ax.legend()
ax.set_xlabel("Frequency (MHz)")
ax.set_ylabel("Approximation error (%)")
ax.set_ylabel("Relative approximation error")
plt.show()
def error(self, rl_exp, im_exp):
@@ -310,8 +310,8 @@ class Relaxation(object):
avg_err_imag (float): average fractional error
for conductivity (imaginary part)
"""
avg_err_real = np.sum(np.abs((rl_exp - self.rl)/self.rl) * 100)/len(rl_exp)
avg_err_imag = np.sum(np.abs((-im_exp + self.im)/self.im) * 100)/len(im_exp)
avg_err_real = np.sum(np.abs((rl_exp - self.rl)/(self.rl + 1)) * 100)/len(rl_exp)
avg_err_imag = np.sum(np.abs((-im_exp + self.im)/(self.im + 1)) * 100)/len(im_exp)
return avg_err_real, avg_err_imag
@staticmethod
@@ -644,21 +644,6 @@ class Rawdata(Relaxation):
if __name__ == "__main__":
# | from Debye_Fit import HavriliakNegami, Jonscher, Rawdata, Crim |
# | |
# | |
# | Rawdata(3, "/data.txt",0.1, 1, 0.1, "M1", plot=True) |
# | |
# | HavriliakNegami(6, 1*10**12, 10**-3, 0.5, 1, 10, 5, 10**-6, 0.1, 1, 0, "M2", plot=True) |
# | |
# | Jonscher(4, 10**6, 10**-5, 50, 1, 10**5, 0.7, 0.1, 1, 0.1, "M3", plot=True) |
# | |
# | f = [0.5, 0.5] |
# | material1 = [3, 25, 10**6] |
# | material2 = [3 ,0, 10**3] |
# | materials = [material1, material2] |
# | Crim(2, 1*10**-1, 10**-9, 0.5, f, materials, 0.1, 1, 0, "M4", plot=True) |
# |
### Kelley et al. parameters
setup = HavriliakNegami(f_min=1e7, f_max=1e11,
alpha=0.91, beta=0.45,