Trying to resolve all the merge conflicts.

这个提交包含在:
Sai-Suraj-27
2023-06-27 16:34:09 +05:30
当前提交 64b3068aa3
共有 18 个文件被更改,包括 81 次插入106 次删除

查看文件

@@ -61,9 +61,9 @@ if epsr:
wavelength = v1 / f
# Print some useful information
logger.info("Centre frequency: {} GHz".format(f / 1e9))
logger.info(f"Centre frequency: {f / 1000000000.0} GHz")
if epsr:
logger.info("Critical angle for Er {} is {} degrees".format(epsr, thetac))
logger.info(f"Critical angle for Er {epsr} is {thetac} degrees")
logger.info("Wavelength: {:.3f} m".format(wavelength))
logger.info(
"Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)".format(
@@ -139,7 +139,7 @@ leg = ax.legend(
[legobj.set_linewidth(2) for legobj in leg.legendHandles]
# Save a pdf of the plot
savename = os.path.splitext(args.numpyfile)[0] + ".pdf"
savename = f"{os.path.splitext(args.numpyfile)[0]}.pdf"
fig.savefig(savename, dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
# savename = os.path.splitext(args.numpyfile)[0] + '.png'
# fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)

查看文件

@@ -123,9 +123,7 @@ class Relaxation(object):
"""
print(f"Approximating {self.name}" f" using {self.number_of_debye_poles} Debye poles")
print(f"{self.name} parameters: ")
s = ""
for k, v in self.params.items():
s += f"{k:10s} = {v}\n"
s = "".join(f"{k:10s} = {v}\n" for k, v in self.params.items())
print(s)
return f"{self.name}:\n{s}"
@@ -232,10 +230,10 @@ class Relaxation(object):
"#material: {} {} {} {} {}\n".format(ee, self.sigma, self.mu, self.mu_sigma, self.material_name)
)
print(material_prop[0], end="")
dispersion_prop = "#add_dispersion_debye: {}".format(len(tau))
dispersion_prop = f"#add_dispersion_debye: {len(tau)}"
for i in range(len(tau)):
dispersion_prop += " {} {}".format(weights[i], 10 ** tau[i])
dispersion_prop += " {}".format(self.material_name)
dispersion_prop += f" {weights[i]} {10**tau[i]}"
dispersion_prop += f" {self.material_name}"
print(dispersion_prop)
material_prop.append(dispersion_prop + "\n")
return material_prop
@@ -312,11 +310,10 @@ class Relaxation(object):
file_path = os.path.join("user_libs", "materials", "my_materials.txt")
else:
sys.exit("Cannot save material properties " f"in {os.path.join(fdir, 'my_materials.txt')}!")
fileH = open(file_path, "a")
fileH.write(f"## {output[0].split(' ')[-1]}")
fileH.writelines(output)
fileH.write("\n")
fileH.close()
with open(file_path, "a") as fileH:
fileH.write(f"## {output[0].split(' ')[-1]}")
fileH.writelines(output)
fileH.write("\n")
print(f"Material properties save at: {file_path}")
@@ -613,7 +610,7 @@ class Crim(Relaxation):
print(f"Approximating Complex Refractive Index Model (CRIM)" f" using {self.number_of_debye_poles} Debye poles")
print("CRIM parameters: ")
for i in range(len(self.volumetric_fractions)):
print("Material {}.:".format(i + 1))
print(f"Material {i + 1}.:")
print("---------------------------------")
print(f"{'Vol. fraction':>27s} = {self.volumetric_fractions[i]}")
print(f"{'e_inf':>27s} = {self.materials[i][0]}")

查看文件

@@ -474,7 +474,6 @@ def DLS(logt, rl, im, freq):
rp, ip = np.matmul(d.real, x[np.newaxis].T).T[0], np.matmul(d.imag, x[np.newaxis].T).T[0]
cost_i = np.sum(np.abs(ip - im)) / len(im)
ee = np.mean(rl - rp)
if ee < 1:
ee = 1
ee = max(ee, 1)
cost_r = np.sum(np.abs(rp + ee - rl)) / len(im)
return cost_i, cost_r, x, ee, rp, ip

查看文件

@@ -79,10 +79,9 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
# Check for single output component when doing a FFT
if fft:
if not len(outputs) == 1:
logger.exception("A single output must be specified when using " + "the -fft option")
raise ValueError
if fft and not len(outputs) == 1:
logger.exception("A single output must be specified when using " + "the -fft option")
raise ValueError
# New plot for each receiver
for rx in range(1, nrx + 1):

查看文件

@@ -86,19 +86,13 @@ def mpl_plot(w, timewindow, dt, iterations, fft=False, save=False):
logging.info(f"Type: {w.type}")
logging.info(f"Maximum (absolute) amplitude: {np.max(np.abs(waveform)):g}")
if w.freq and not w.type == "gaussian" and not w.type == "impulse":
if w.freq and w.type != "gaussian" and w.type != "impulse":
logging.info(f"Centre frequency: {w.freq:g} Hz")
if (
w.type == "gaussian"
or w.type == "gaussiandot"
or w.type == "gaussiandotnorm"
or w.type == "gaussianprime"
or w.type == "gaussiandoubleprime"
):
if w.type in ["gaussian", "gaussiandot", "gaussiandotnorm", "gaussianprime", "gaussiandoubleprime"]:
delay = 1 / w.freq
logging.info(f"Time to centre of pulse: {delay:g} s")
elif w.type == "gaussiandotdot" or w.type == "gaussiandotdotnorm" or w.type == "ricker":
elif w.type in ["gaussiandotdot", "gaussiandotdotnorm", "ricker"]:
delay = np.sqrt(2) / w.freq
logging.info(f"Time to centre of pulse: {delay:g} s")

查看文件

@@ -36,12 +36,9 @@ def generate_y(p1, p2, x):
def paint_y_axis(lines, pixels, x):
is_black = False
target_ys = list(map(lambda line: int(generate_y(line[0], line[1], x)), lines))
target_ys.sort()
target_ys = sorted(map(lambda line: int(generate_y(line[0], line[1], x)), lines))
if len(target_ys) % 2:
distances = []
for i in range(len(target_ys) - 1):
distances.append(target_ys[i + 1] - target_ys[i])
distances = [target_ys[i + 1] - target_ys[i] for i in range(len(target_ys) - 1)]
# https://stackoverflow.com/a/17952763
min_idx = -min((x, -i) for i, x in enumerate(distances))[1]
del target_ys[min_idx]
@@ -54,7 +51,7 @@ def paint_y_axis(lines, pixels, x):
pixels[target_y][x] = True
is_black = not is_black
yi = target_y
assert is_black is False, "an error has occured at x%s" % x
assert is_black is False, f"an error has occured at x{x}"
def generate_line_events(line_list):

查看文件

@@ -1,3 +1,4 @@
import itertools
import multiprocessing as mp
import sys
@@ -90,10 +91,7 @@ def triangle_to_intersecting_lines(triangle, height, pixels, lines):
y = int(same[0][1])
pixels[y][x] = True
else:
cross_lines = []
for a in above:
for b in below:
cross_lines.append((b, a))
cross_lines = [(b, a) for a, b in itertools.product(above, below)]
side1 = where_line_crosses_z(cross_lines[0][0], cross_lines[0][1], height)
side2 = where_line_crosses_z(cross_lines[1][0], cross_lines[1][1], height)
lines.append((side1, side2))