你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 23:14:03 +08:00
Added more options for checking PMLs
这个提交包含在:
93
testing/diff_output_files.py
普通文件
93
testing/diff_output_files.py
普通文件
@@ -0,0 +1,93 @@
|
||||
# Copyright (C) 2015-2023: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def diff_output_files(filename1, filename2):
|
||||
"""Calculates differences between two output files.
|
||||
|
||||
Args:
|
||||
filename1: string of filename (including path) of output file 1.
|
||||
filename2: string of filename (including path) of output file 2.
|
||||
|
||||
Returns:
|
||||
time: numpy array containing time.
|
||||
datadiffs: numpy array containing power (dB) of differences.
|
||||
"""
|
||||
|
||||
file1 = h5py.File(Path(filename1), "r")
|
||||
file2 = h5py.File(Path(filename2), "r")
|
||||
# Path to receivers in files
|
||||
path = "rxs/rx1/"
|
||||
|
||||
# Get available field output component names
|
||||
outputs1 = list(file1[path].keys())
|
||||
outputs2 = list(file2[path].keys())
|
||||
if outputs1 != outputs2:
|
||||
logger.exception("Field output components are not the same in each file")
|
||||
raise ValueError
|
||||
|
||||
# Check that type of float used to store fields matches
|
||||
floattype1 = file1[path + outputs1[0]].dtype
|
||||
floattype2 = file2[path + outputs2[0]].dtype
|
||||
if floattype1 != floattype2:
|
||||
logger.warning(
|
||||
f"Type of floating point number in test model ({file1[path + outputs1[0]].dtype}) "
|
||||
f"does not match type in reference solution ({file2[path + outputs2[0]].dtype})\n"
|
||||
)
|
||||
|
||||
# Arrays for storing time
|
||||
time1 = np.zeros((file1.attrs["Iterations"]), dtype=floattype1)
|
||||
time1 = np.linspace(0, (file1.attrs["Iterations"] - 1), num=file1.attrs["Iterations"])
|
||||
time2 = np.zeros((file2.attrs["Iterations"]), dtype=floattype2)
|
||||
time2 = np.linspace(0, (file2.attrs["Iterations"] - 1), num=file2.attrs["Iterations"])
|
||||
|
||||
# Arrays for storing field data
|
||||
data1 = np.zeros((file1.attrs["Iterations"], len(outputs1)), dtype=floattype1)
|
||||
data2 = np.zeros((file2.attrs["Iterations"], len(outputs2)), dtype=floattype2)
|
||||
for ID, name in enumerate(outputs1):
|
||||
data1[:, ID] = file1[path + str(name)][:]
|
||||
data2[:, ID] = file2[path + str(name)][:]
|
||||
if np.any(np.isnan(data1[:, ID])) or np.any(np.isnan(data2[:, ID])):
|
||||
logger.exception("Data contains NaNs")
|
||||
raise ValueError
|
||||
|
||||
file1.close()
|
||||
file2.close()
|
||||
|
||||
# Diffs
|
||||
datadiffs = np.zeros(data1.shape, dtype=np.float64)
|
||||
for i in range(len(outputs2)):
|
||||
maxi = np.amax(np.abs(data1[:, i]))
|
||||
datadiffs[:, i] = np.divide(
|
||||
np.abs(data2[:, i] - data1[:, i]), maxi, out=np.zeros_like(data1[:, i]), where=maxi != 0
|
||||
) # Replace any division by zero with zero
|
||||
|
||||
# Calculate power (ignore warning from taking a log of any zero values)
|
||||
with np.errstate(divide="ignore"):
|
||||
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i])
|
||||
# Replace any NaNs or Infs from zero division
|
||||
datadiffs[:, i][np.invert(np.isfinite(datadiffs[:, i]))] = 0
|
||||
|
||||
return time1, datadiffs
|
在新工单中引用
屏蔽一个用户