你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
Updated some variable names and plot legend.
这个提交包含在:
@@ -27,62 +27,62 @@ import matplotlib.pyplot as plt
|
|||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
cd gprMax
|
cd gprMax
|
||||||
python -m tests.test_compare_numerical path_to_new_file path_to_old_file
|
python -m tests.test_compare_numerical path_to_file1 path_to_file2
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
newfile = sys.argv[1]
|
filename1 = sys.argv[1]
|
||||||
oldfile = sys.argv[2]
|
filename2 = sys.argv[2]
|
||||||
path = '/rxs/rx1/'
|
path = '/rxs/rx1/'
|
||||||
# Key refers to subplot location
|
# Key refers to subplot location
|
||||||
fields = {0: 'Ex', 2: 'Ey', 4: 'Ez', 1: 'Hx', 3: 'Hy', 5: 'Hz'}
|
fields = {0: 'Ex', 2: 'Ey', 4: 'Ez', 1: 'Hx', 3: 'Hy', 5: 'Hz'}
|
||||||
plotorder = list(fields.keys())
|
plotorder = list(fields.keys())
|
||||||
|
|
||||||
# New results
|
# File 1 results
|
||||||
f = h5py.File(newfile, 'r')
|
f = h5py.File(filename1, 'r')
|
||||||
floattype = f[path + 'Ex'].dtype
|
floattype = f[path + 'Ex'].dtype
|
||||||
new = np.zeros((f.attrs['Iterations'], 6), dtype=floattype)
|
data1 = np.zeros((f.attrs['Iterations'], 6), dtype=floattype)
|
||||||
timenew = np.zeros((f.attrs['Iterations']), dtype=floattype)
|
time1 = np.zeros((f.attrs['Iterations']), dtype=floattype)
|
||||||
timenew = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt']) / 1e-9
|
time1 = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt']) / 1e-9
|
||||||
for ID, name in fields.items():
|
for ID, name in fields.items():
|
||||||
new[:,ID] = f[path + str(name)][:]
|
data1[:,ID] = f[path + str(name)][:]
|
||||||
f.close()
|
f.close()
|
||||||
|
|
||||||
# Old results
|
# File 2 results
|
||||||
f = h5py.File(oldfile, 'r')
|
f = h5py.File(filename2, 'r')
|
||||||
old = np.zeros((f.attrs['Iterations'], 6), dtype=floattype)
|
data2 = np.zeros((f.attrs['Iterations'], 6), dtype=floattype)
|
||||||
timeold = np.zeros((f.attrs['Iterations']), dtype=floattype)
|
time2 = np.zeros((f.attrs['Iterations']), dtype=floattype)
|
||||||
timeold = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt']) / 1e-9
|
time2 = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt']) / 1e-9
|
||||||
for ID, name in fields.items():
|
for ID, name in fields.items():
|
||||||
old[:,ID] = f[path + str(name)][:]
|
data2[:,ID] = f[path + str(name)][:]
|
||||||
f.close()
|
f.close()
|
||||||
|
|
||||||
# Differences
|
# Differences
|
||||||
# In case there is any difference in the number of iterations, take the smaller
|
# In case there is any difference in the number of iterations, take the smaller
|
||||||
timesmallest = np.amin((timeold.shape, timenew.shape))
|
timesmallest = np.amin((time2.shape, time1.shape))
|
||||||
fieldssmallest = np.amin((old.shape[0], new.shape[0]))
|
fieldssmallest = np.amin((data2.shape[0], data1.shape[0]))
|
||||||
|
|
||||||
threshold = 1e-4 # Threshold, below which ignore differences
|
threshold = 1e-4 # Threshold, below which ignore differences
|
||||||
diffs = np.zeros((fieldssmallest, 6), dtype=floattype)
|
diffs = np.zeros((fieldssmallest, 6), dtype=floattype)
|
||||||
for ID, name in fields.items():
|
for ID, name in fields.items():
|
||||||
max = np.amax(np.abs(new[:fieldssmallest,ID]))
|
max = np.amax(np.abs(data1[:fieldssmallest,ID]))
|
||||||
if max < threshold:
|
if max < threshold:
|
||||||
diffs[:,ID] = 0
|
diffs[:,ID] = 0
|
||||||
diffsum = 0
|
diffsum = 0
|
||||||
print('Detected differences of less than {} when comparing {} field component, therefore set as zero.'.format(threshold, fields[ID]))
|
print('Detected differences of less than {} when comparing {} field component, therefore set as zero.'.format(threshold, fields[ID]))
|
||||||
else:
|
else:
|
||||||
diffs[:,ID] = (np.abs(new[:fieldssmallest,ID] - old[:fieldssmallest,ID]) / max) * 100
|
diffs[:,ID] = (np.abs(data1[:fieldssmallest,ID] - data2[:fieldssmallest,ID]) / max) * 100
|
||||||
diffsum = (np.sum(np.abs(new[:fieldssmallest,ID] - old[:fieldssmallest,ID])) / np.sum(np.abs(new[:fieldssmallest,ID]))) * 100
|
diffsum = (np.sum(np.abs(data1[:fieldssmallest,ID] - data2[:fieldssmallest,ID])) / np.sum(np.abs(data1[:fieldssmallest,ID]))) * 100
|
||||||
print('Total differences in field component {}: {:.1f}%'.format(name, diffsum))
|
print('Total differences in field component {}: {:.1f}%'.format(name, diffsum))
|
||||||
|
|
||||||
# Plot new
|
# Plot data1
|
||||||
fig1, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num=newfile + ' versus ' + oldfile, figsize=(20, 10), facecolor='w', edgecolor='w')
|
fig1, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num=filename1 + ' versus ' + filename2, figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
ax1.plot(timenew, new[:,0],'r', lw=2, label='Ex')
|
ax1.plot(time1, data1[:,0],'r', lw=2, label='Ex')
|
||||||
ax3.plot(timenew, new[:,2],'r', lw=2, label='Ey')
|
ax3.plot(time1, data1[:,2],'r', lw=2, label='Ey')
|
||||||
ax5.plot(timenew, new[:,4],'r', lw=2, label='Ez')
|
ax5.plot(time1, data1[:,4],'r', lw=2, label='Ez')
|
||||||
ax2.plot(timenew, new[:,1],'b', lw=2, label='Hx')
|
ax2.plot(time1, data1[:,1],'b', lw=2, label='Hx')
|
||||||
ax4.plot(timenew, new[:,3],'b', lw=2, label='Hy')
|
ax4.plot(time1, data1[:,3],'b', lw=2, label='Hy')
|
||||||
ax6.plot(timenew, new[:,5],'b', lw=2, label='Hz')
|
ax6.plot(time1, data1[:,5],'b', lw=2, label='Hz')
|
||||||
|
|
||||||
# Set ylabels
|
# Set ylabels
|
||||||
ylabels = ['$E_x$, field strength [V/m]', '$H_x$, field strength [A/m]', '$E_y$, field strength [V/m]', '$H_y$, field strength [A/m]', '$E_z$, field strength [V/m]', '$H_z$, field strength [A/m]']
|
ylabels = ['$E_x$, field strength [V/m]', '$H_x$, field strength [A/m]', '$E_y$, field strength [V/m]', '$H_y$, field strength [A/m]', '$E_z$, field strength [V/m]', '$H_z$, field strength [A/m]']
|
||||||
@@ -91,24 +91,24 @@ ylabels = ['$E_x$, field strength [V/m]', '$H_x$, field strength [A/m]', '$E_y$,
|
|||||||
# Turn on grid
|
# Turn on grid
|
||||||
[ax.grid() for ax in fig1.axes]
|
[ax.grid() for ax in fig1.axes]
|
||||||
|
|
||||||
# Add old and set legend
|
# Add data2 and set legend
|
||||||
for index, ax in enumerate(fig1.axes):
|
for index, ax in enumerate(fig1.axes):
|
||||||
if plotorder[index] in [0, 2, 4]:
|
if plotorder[index] in [0, 2, 4]:
|
||||||
ax.plot(timeold, old[:,plotorder[index]], 'r', label='old', lw=2, ls='--')
|
ax.plot(time2, data2[:,plotorder[index]], 'r', label='data2', lw=2, ls='--')
|
||||||
else:
|
else:
|
||||||
ax.plot(timeold, old[:,plotorder[index]], label='old', lw=2, ls='--')
|
ax.plot(time2, data2[:,plotorder[index]], label='data2', lw=2, ls='--')
|
||||||
ax.set_xlim(0, timeold[-1])
|
ax.set_xlim(0, time2[-1])
|
||||||
handles, existlabels = ax.get_legend_handles_labels()
|
handles, existlabels = ax.get_legend_handles_labels()
|
||||||
ax.legend(handles, ['Model 1', 'Model 2'])
|
ax.legend(handles, [os.path.split(filename1)[1], os.path.split(filename2)[1]])
|
||||||
|
|
||||||
# Plots of differences
|
# Plots of differences
|
||||||
fig2, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='Deltas: ' + newfile + ' versus ' + oldfile, figsize=(20, 10), facecolor='w', edgecolor='w')
|
fig2, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='Deltas: ' + filename1 + ' versus ' + filename2, figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
ax1.plot(timenew[:timesmallest], diffs[:,0],'r', lw=2, label='Ex')
|
ax1.plot(time1[:timesmallest], diffs[:,0],'r', lw=2, label='Ex')
|
||||||
ax3.plot(timenew[:timesmallest], diffs[:,2],'r', lw=2, label='Ey')
|
ax3.plot(time1[:timesmallest], diffs[:,2],'r', lw=2, label='Ey')
|
||||||
ax5.plot(timenew[:timesmallest], diffs[:,4],'r', lw=2, label='Ez')
|
ax5.plot(time1[:timesmallest], diffs[:,4],'r', lw=2, label='Ez')
|
||||||
ax2.plot(timenew[:timesmallest], diffs[:,1],'b', lw=2, label='Hx')
|
ax2.plot(time1[:timesmallest], diffs[:,1],'b', lw=2, label='Hx')
|
||||||
ax4.plot(timenew[:timesmallest], diffs[:,3],'b', lw=2, label='Hy')
|
ax4.plot(time1[:timesmallest], diffs[:,3],'b', lw=2, label='Hy')
|
||||||
ax6.plot(timenew[:timesmallest], diffs[:,5],'b', lw=2, label='Hz')
|
ax6.plot(time1[:timesmallest], diffs[:,5],'b', lw=2, label='Hz')
|
||||||
|
|
||||||
# Set ylabels
|
# Set ylabels
|
||||||
ylabels = ['$E_x$', '$H_x$', '$E_y$', '$H_y$', '$E_z$', '$H_z$']
|
ylabels = ['$E_x$', '$H_x$', '$E_y$', '$H_y$', '$E_z$', '$H_z$']
|
||||||
@@ -117,11 +117,11 @@ ylabels = [ylabel + ', percentage difference [%]' for ylabel in ylabels]
|
|||||||
|
|
||||||
# Set axes limits and turn on grid
|
# Set axes limits and turn on grid
|
||||||
[ax.grid() for ax in fig2.axes]
|
[ax.grid() for ax in fig2.axes]
|
||||||
[ax.set_xlim(0, timenew[timesmallest - 1]) for ax in fig2.axes]
|
[ax.set_xlim(0, time1[timesmallest - 1]) for ax in fig2.axes]
|
||||||
[ax.set_ylim(0, np.ceil(np.amax(np.abs(diffs)))) for ax in fig2.axes]
|
[ax.set_ylim(0, np.ceil(np.amax(np.abs(diffs)))) for ax in fig2.axes]
|
||||||
|
|
||||||
# Show/print plots
|
# Show/print plots
|
||||||
savename = os.path.abspath(os.path.dirname(newfile)) + os.sep + os.path.splitext(os.path.split(newfile)[1])[0] + '_vs_' + os.path.splitext(os.path.split(oldfile)[1])[0]
|
savename = os.path.abspath(os.path.dirname(filename1)) + os.sep + os.path.splitext(os.path.split(filename1)[1])[0] + '_vs_' + os.path.splitext(os.path.split(filename2)[1])[0]
|
||||||
#fig1.savefig(savename + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
#fig1.savefig(savename + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||||
#fig2.savefig(savename + '_diffs.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
#fig2.savefig(savename + '_diffs.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
在新工单中引用
屏蔽一个用户