Sources now use pre-calculated waveform values, instead of calculating on-the-fly.

Sources now use iteration counter - no absolute time value required.
Transmission line spatial step updated from using magic time step (which showed instabilities) to sqrt(3) x c x dt
这个提交包含在:
Craig Warren
2017-02-21 12:54:00 +00:00
父节点 2af687bacb
当前提交 4e64fc8b87

查看文件

@@ -17,6 +17,7 @@
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
from copy import deepcopy
import decimal as d
import numpy as np
@@ -41,51 +42,67 @@ class Source(object):
self.stop = None
self.waveformID = None
def calculate_waveform_values(self, G):
"""Calculates all waveform values for source for duration of simulation.
Args:
G (class): Grid class instance - holds essential parameters describing the model.
"""
self.waveformvaluesJ = np.zeros((G.iterations + 1), dtype=floattype)
self.waveformvaluesM = np.zeros((G.iterations + 1), dtype=floattype)
waveform = next(x for x in G.waveforms if x.ID == self.waveformID)
for iteration in range(G.iterations + 1):
time = G.dt * iteration
if time >= self.start and time <= self.stop:
# Set the time of the waveform evaluation to account for any delay in the start
time -= self.start
self.waveformvaluesJ[iteration] = waveform.calculate_value(time + 0.5 * G.dt, G.dt)
self.waveformvaluesM[iteration] = waveform.calculate_value(time, G.dt)
class VoltageSource(Source):
"""A voltage source can be a hard source if it's resistance is zero, i.e. the time variation of the specified electric field component is prescribed. If it's resistance is non-zero it behaves as a resistive voltage source."""
def __init__(self):
super(Source, self).__init__()
super().__init__()
self.resistance = None
def update_electric(self, abstime, updatecoeffsE, ID, Ex, Ey, Ez, G):
def update_electric(self, iteration, updatecoeffsE, ID, Ex, Ey, Ez, G):
"""Updates electric field values for a voltage source.
Args:
abstime (float): Absolute time.
iteration (int): Current iteration (timestep).
updatecoeffsE (memory view): numpy array of electric field update coefficients.
ID (memory view): numpy array of numeric IDs corresponding to materials in the model.
Ex, Ey, Ez (memory view): numpy array of electric field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if abstime >= self.start and abstime <= self.stop:
# Set the time of the waveform evaluation to account for any delay in the start
time = abstime - self.start
if iteration * G.dt >= self.start and iteration * G.dt <= self.stop:
i = self.xcoord
j = self.ycoord
k = self.zcoord
waveform = next(x for x in G.waveforms if x.ID == self.waveformID)
componentID = 'E' + self.polarisation
if self.polarisation == 'x':
if self.resistance != 0:
Ex[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * (1 / (self.resistance * G.dy * G.dz))
Ex[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * (1 / (self.resistance * G.dy * G.dz))
else:
Ex[i, j, k] = -1 * waveform.amp * waveform.calculate_value(time, G.dt) / G.dx
Ex[i, j, k] = -1 * self.waveformvaluesJ[iteration] / G.dx
elif self.polarisation == 'y':
if self.resistance != 0:
Ey[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * (1 / (self.resistance * G.dx * G.dz))
Ey[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * (1 / (self.resistance * G.dx * G.dz))
else:
Ey[i, j, k] = -1 * waveform.amp * waveform.calculate_value(time, G.dt) / G.dy
Ey[i, j, k] = -1 * self.waveformvaluesJ[iteration] / G.dy
elif self.polarisation == 'z':
if self.resistance != 0:
Ez[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * (1 / (self.resistance * G.dx * G.dy))
Ez[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * (1 / (self.resistance * G.dx * G.dy))
else:
Ez[i, j, k] = -1 * waveform.amp * waveform.calculate_value(time, G.dt) / G.dz
Ez[i, j, k] = -1 * self.waveformvaluesJ[iteration] / G.dz
def create_material(self, G):
"""Create a new material at the voltage source location that adds the voltage source conductivity to the underlying parameters.
@@ -106,7 +123,7 @@ class VoltageSource(Source):
newmaterial.ID = material.ID + '+VoltageSource_' + str(self.resistance)
newmaterial.numID = len(G.materials)
newmaterial.averagable = False
newmaterial.type += ', voltage-source'
newmaterial.type += ',\nvoltage-source'
# Add conductivity of voltage source to underlying conductivity
if self.polarisation == 'x':
@@ -124,74 +141,67 @@ class HertzianDipole(Source):
"""A Hertzian dipole is an additive source (electric current density)."""
def __init__(self):
super(Source, self).__init__()
super().__init__()
self.dl = None
def update_electric(self, abstime, updatecoeffsE, ID, Ex, Ey, Ez, G):
def update_electric(self, iteration, updatecoeffsE, ID, Ex, Ey, Ez, G):
"""Updates electric field values for a Hertzian dipole.
Args:
abstime (float): Absolute time.
iteration (int): Current iteration (timestep).
updatecoeffsE (memory view): numpy array of electric field update coefficients.
ID (memory view): numpy array of numeric IDs corresponding to materials in the model.
Ex, Ey, Ez (memory view): numpy array of electric field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if abstime >= self.start and abstime <= self.stop:
# Set the time of the waveform evaluation to account for any delay in the start
time = abstime - self.start
if iteration * G.dt >= self.start and iteration * G.dt <= self.stop:
i = self.xcoord
j = self.ycoord
k = self.zcoord
waveform = next(x for x in G.waveforms if x.ID == self.waveformID)
componentID = 'E' + self.polarisation
if self.polarisation == 'x':
Ex[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * self.dl * (1 / (G.dx * G.dy * G.dz))
Ex[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * self.dl * (1 / (G.dx * G.dy * G.dz))
elif self.polarisation == 'y':
Ey[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * self.dl * (1 / (G.dx * G.dy * G.dz))
Ey[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * self.dl * (1 / (G.dx * G.dy * G.dz))
elif self.polarisation == 'z':
Ez[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * self.dl * (1 / (G.dx * G.dy * G.dz))
Ez[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * self.dl * (1 / (G.dx * G.dy * G.dz))
class MagneticDipole(Source):
"""A magnetic dipole is an additive source (magnetic current density)."""
def __init__(self):
super(Source, self).__init__()
super().__init__()
def update_magnetic(self, abstime, updatecoeffsH, ID, Hx, Hy, Hz, G):
def update_magnetic(self, iteration, updatecoeffsH, ID, Hx, Hy, Hz, G):
"""Updates magnetic field values for a magnetic dipole.
Args:
abstime (float): Absolute time.
iteration (int): Current iteration (timestep).
updatecoeffsH (memory view): numpy array of magnetic field update coefficients.
ID (memory view): numpy array of numeric IDs corresponding to materials in the model.
Hx, Hy, Hz (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if abstime >= self.start and abstime <= self.stop:
# Set the time of the waveform evaluation to account for any delay in the start
time = abstime - self.start
if iteration * G.dt >= self.start and iteration * G.dt <= self.stop:
i = self.xcoord
j = self.ycoord
k = self.zcoord
waveform = next(x for x in G.waveforms if x.ID == self.waveformID)
componentID = 'H' + self.polarisation
if self.polarisation == 'x':
Hx[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * (1 / (G.dx * G.dy * G.dz))
Hx[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesM[iteration] * (1 / (G.dx * G.dy * G.dz))
elif self.polarisation == 'y':
Hy[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * (1 / (G.dx * G.dy * G.dz))
Hy[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesM[iteration] * (1 / (G.dx * G.dy * G.dz))
elif self.polarisation == 'z':
Hz[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * waveform.amp * waveform.calculate_value(time, G.dt) * (1 / (G.dx * G.dy * G.dz))
Hz[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesM[iteration] * (1 / (G.dx * G.dy * G.dz))
class TransmissionLine(Source):
@@ -203,15 +213,15 @@ class TransmissionLine(Source):
G (class): Grid class instance - holds essential parameters describing the model.
"""
super(Source, self).__init__()
super().__init__()
self.resistance = None
# Coefficients for ABC termination of end of the transmission line
self.abcv0 = 0
self.abcv1 = 0
# Spatial step of transmission line (based on magic time step for dispersionless behaviour)
self.dl = c * G.dt
# Spatial step of transmission line (N.B if the magic time step is used it results in instabilities for certain impedances)
self.dl = np.sqrt(3) * c * G.dt
# Number of cells in the transmission line (initially a long line to calculate incident voltage and current); consider putting ABCs/PML at end
self.nl = round_value(0.667 * G.iterations)
@@ -236,14 +246,11 @@ class TransmissionLine(Source):
G (class): Grid class instance - holds essential parameters describing the model.
"""
abstime = 0
for timestep in range(G.iterations):
self.Vinc[timestep] = self.voltage[self.antpos]
self.Iinc[timestep] = self.current[self.antpos]
self.update_voltage(abstime, G)
abstime += 0.5 * G.dt
self.update_current(abstime, G)
abstime += 0.5 * G.dt
for iteration in range(G.iterations):
self.Iinc[iteration] = self.current[self.antpos]
self.Vinc[iteration] = self.voltage[self.antpos]
self.update_current(iteration, G)
self.update_voltage(iteration, G)
# Shorten number of cells in the transmission line before use with main grid
self.nl = self.antpos + 1
@@ -261,11 +268,11 @@ class TransmissionLine(Source):
self.abcv0 = self.voltage[0]
self.abcv1 = self.voltage[1]
def update_voltage(self, time, G):
def update_voltage(self, iteration, G):
"""Updates voltage values along the transmission line.
Args:
time (float): Absolute time.
iteration (int): Current iteration (timestep).
G (class): Grid class instance - holds essential parameters describing the model.
"""
@@ -273,17 +280,16 @@ class TransmissionLine(Source):
self.voltage[1:self.nl] -= self.resistance * (c * G.dt / self.dl) * (self.current[1:self.nl] - self.current[0:self.nl - 1])
# Update the voltage at the position of the one-way injector excitation
waveform = next(x for x in G.waveforms if x.ID == self.waveformID)
self.voltage[self.srcpos] += (c * G.dt / self.dl) * waveform.amp * waveform.calculate_value(time - 0.5 * G.dt, G.dt)
self.voltage[self.srcpos] += (c * G.dt / self.dl) * self.waveformvaluesJ[iteration]
# Update ABC before updating current
self.update_abc(G)
def update_current(self, time, G):
def update_current(self, iteration, G):
"""Updates current values along the transmission line.
Args:
time (float): Absolute time.
iteration (int): Current iteration (timestep).
G (class): Grid class instance - holds essential parameters describing the model.
"""
@@ -291,28 +297,25 @@ class TransmissionLine(Source):
self.current[0:self.nl - 1] -= (1 / self.resistance) * (c * G.dt / self.dl) * (self.voltage[1:self.nl] - self.voltage[0:self.nl - 1])
# Update the current one cell before the position of the one-way injector excitation
waveform = next(x for x in G.waveforms if x.ID == self.waveformID)
self.current[self.srcpos - 1] += (c * G.dt / self.dl) * waveform.amp * waveform.calculate_value(time - 0.5 * G.dt, G.dt) * (1 / self.resistance)
self.current[self.srcpos - 1] += (1 / self.resistance) * (c * G.dt / self.dl) * self.waveformvaluesM[iteration]
def update_electric(self, abstime, updatecoeffsE, ID, Ex, Ey, Ez, G):
def update_electric(self, iteration, updatecoeffsE, ID, Ex, Ey, Ez, G):
"""Updates electric field value in the main grid from voltage value in the transmission line.
Args:
abstime (float): Absolute time.
iteration (int): Current iteration (timestep).
updatecoeffsE (memory view): numpy array of electric field update coefficients.
ID (memory view): numpy array of numeric IDs corresponding to materials in the model.
Ex, Ey, Ez (memory view): numpy array of electric field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if abstime >= self.start and abstime <= self.stop:
# Set the time of the waveform evaluation to account for any delay in the start
time = abstime - self.start
if iteration * G.dt >= self.start and iteration * G.dt <= self.stop:
i = self.xcoord
j = self.ycoord
k = self.zcoord
self.update_voltage(time, G)
self.update_voltage(iteration, G)
if self.polarisation == 'x':
Ex[i, j, k] = - self.voltage[self.antpos] / G.dx
@@ -323,34 +326,32 @@ class TransmissionLine(Source):
elif self.polarisation == 'z':
Ez[i, j, k] = - self.voltage[self.antpos] / G.dz
def update_magnetic(self, abstime, updatecoeffsH, ID, Hx, Hy, Hz, G):
def update_magnetic(self, iteration, updatecoeffsH, ID, Hx, Hy, Hz, G):
"""Updates current value in transmission line from magnetic field values in the main grid.
Args:
abstime (float): Absolute time.
iteration (int): Current iteration (timestep).
updatecoeffsH (memory view): numpy array of magnetic field update coefficients.
ID (memory view): numpy array of numeric IDs corresponding to materials in the model.
Hx, Hy, Hz (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if abstime >= self.start and abstime <= self.stop:
# Set the time of the waveform evaluation to account for any delay in the start
time = abstime - self.start
if iteration * G.dt >= self.start and iteration * G.dt <= self.stop:
i = self.xcoord
j = self.ycoord
k = self.zcoord
if self.polarisation == 'x':
self.current[self.antpos] = Ix(i, j, k, G.Hy, G.Hz, G)
self.current[self.antpos] = Ix(i, j, k, G.Hx, G.Hy, G.Hz, G)
elif self.polarisation == 'y':
self.current[self.antpos] = Iy(i, j, k, G.Hx, G.Hz, G)
self.current[self.antpos] = Iy(i, j, k, G.Hx, G.Hy, G.Hz, G)
elif self.polarisation == 'z':
self.current[self.antpos] = Iz(i, j, k, G.Hx, G.Hy, G)
self.current[self.antpos] = Iz(i, j, k, G.Hx, G.Hy, G.Hz, G)
self.update_current(time, G)
self.update_current(iteration, G)
class PlaneWave(Source):