Corrections to xcorr fitness function and addition of fitness function to sum difference (in dB) between model and reference responses.

这个提交包含在:
Craig Warren
2015-12-17 14:35:34 +00:00
父节点 1702392516
当前提交 3cba5bfc3f

查看文件

@@ -5,9 +5,9 @@
#
# Please use the attribution at http://dx.doi.org/10.1190/1.3548506
import h5py
import numpy as np
from scipy import signal
import h5py
"""This module contains fitness metric functions that can be used with the Taguchi optimisation method.
@@ -18,7 +18,7 @@ import h5py
def fitness_max(filename, args):
"""Return the maximum value from a specific output in the input file.
"""Maximum value from a response.
Args:
filename (str): Name of output file
@@ -41,24 +41,25 @@ def fitness_max(filename, args):
def fitness_xcorr(filename, args):
"""Return the maximum value from a specific output in the input file.
"""Maximum value of a cross-correlation between a response and a reference response.
Args:
filename (str): Name of output file
args (dict): 'refresp' key with path & filename of reference signal (time, amp) stored in a text file; 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
args (dict): 'refresp' key with path & filename of reference response (time, amp) stored in a text file; 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
Returns:
xcorrmax (float): Maximum value from specific outputs
"""
# Load and normalise the reference response
# Load (from text file) and normalise the reference response
with open(args['refresp'], 'r') as f:
refdata = np.loadtxt(f)
reftime = refdata[:,0]
reftime = refdata[:,0] * 1e-9
refresp = refdata[:,1]
refresp /= np.amax(np.abs(refresp))
# Load response from output file
print(filename)
f = h5py.File(filename, 'r')
nrx = f.attrs['nrx']
modeltime = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt'])
@@ -87,21 +88,66 @@ def fitness_xcorr(filename, args):
modeltime = np.arange(0, reftime[-1], f.attrs['dt'])
modelresp = modelresp[0:len(modeltime)]
# Resample the response with the lower sampling rate
if len(modeltime) > len(reftime):
reftime = signal.resample(reftime, len(modeltime))
# Downsample the response with the higher sampling rate
if len(modeltime) < len(reftime):
refresp = signal.resample(refresp, len(modelresp))
elif len(reftime) > len(modeltime):
modeltime = signal.resample(modeltime, len(reftime))
elif len(reftime) < len(modeltime):
modelresp = signal.resample(modelresp, len(refresp))
# Plots responses for checking
# fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Voltage [V]'), figsize=(20, 10), facecolor='w', edgecolor='w')
# ax.plot(refresp,'r', lw=2, label='refresp')
# ax.plot(modelresp,'b', lw=2, label='modelresp')
# ax.grid()
# plt.show()
# Calculate cross-correlation
xcorr = signal.correlate(refresp, modelresp)
xcorrmax = np.amax(xcorr)
# Plot cross-correlation for checking
# fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Voltage [V]'), figsize=(20, 10), facecolor='w', edgecolor='w')
# ax.plot(xcorr,'r', lw=2, label='xcorr')
# ax.grid()
# plt.show()
xcorrmax = np.amax(xcorr) / 100
return xcorrmax
def fitness_diff_dB(filename, args):
"""Sum of the differences (in dB) between a response and a reference response.
Args:
filename (str): Name of output file
args (dict): 'refresp' key with path & filename of reference response; 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
Returns:
diffdB (float): Sum of the differences (in dB) between a response and a reference response
"""
# Load (from gprMax output file) the reference response
f = h5py.File(args['refresp'], 'r')
tmp = f['/rxs/rx1/']
fieldname = list(tmp.keys())[0]
refresp = tmp[fieldname]
# Load (from gprMax output file) the response
f = h5py.File(filename, 'r')
nrx = f.attrs['nrx']
for rx in range(1, nrx + 1):
tmp = f['/rxs/rx' + str(rx) + '/']
if tmp.attrs['Name'] in args['outputs']:
fieldname = list(tmp.keys())[0]
modelresp = tmp[fieldname]
# Calculate sum of differences
diffdB = np.abs(modelresp - refresp) / np.amax(np.abs(refresp))
diffdB = 20 * np.log10(np.sum(diffdB))
return diffdB