你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
Merge branch 'devel' of https://github.com/gprMax/gprMax into devel
这个提交包含在:
@@ -21,18 +21,18 @@ The generic form of dispersive media is
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon(\omega) = \epsilon^{'}(\omega) - j\epsilon^{''}(\omega),
|
||||
\\epsilon(\\omega) = \\epsilon^{'}(\\omega) - j\\epsilon^{''}(\\omega),
|
||||
|
||||
where :math:`\omega` is the angular frequency, :math:`\epsilon^{'}` and :math:`\epsilon^{''}` are the real and imaginary parts of the permittivity respectively.
|
||||
where :math:`\\omega` is the angular frequency, :math:`\\epsilon^{'}` and :math:`\\epsilon^{''}` are the real and imaginary parts of the permittivity respectively.
|
||||
|
||||
This package provides scripts and tools which can be used to fit a multi-Debye expansion to dielectric data, defined as
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon(\omega) = \epsilon_{\infty} + \sum_{i=1}^{N}\frac{\Delta\epsilon_{i}}{1+j\omega t_{0,i}},
|
||||
\\epsilon(\\omega) = \\epsilon_{\\infty} + \\sum_{i=1}^{N}\\frac{\\Delta\\epsilon_{i}}{1+j\\omega t_{0,i}},
|
||||
|
||||
where :math:`\epsilon(\omega)` is frequency dependent dielectric permittivity, :math:`\Delta\epsilon` - difference between the real permittivity at zero and infinite frequency.
|
||||
:math:`\tau_{0}` is relaxation time (seconds), :math:`\epsilon_{\infty}` - real part of relative permittivity at infinite frequency, and :math:`N` is number of the Debye poles.
|
||||
where :math:`\\epsilon(\\omega)` is frequency dependent dielectric permittivity, :math:`\\Delta\\epsilon` - difference between the real permittivity at zero and infinite frequency.
|
||||
:math:`\\tau_{0}` is relaxation time (seconds), :math:`\\epsilon_{\\infty}` - real part of relative permittivity at infinite frequency, and :math:`N` is number of the Debye poles.
|
||||
|
||||
To fit the data to a multi-Debye expansion, you can choose between Havriliak-Negami, Jonscher, or Complex Refractive Index Mixing (CRIM) models, as well as arbitrary dielectric data derived experimentally or calculated using a different function.
|
||||
|
||||
@@ -65,7 +65,7 @@ The Havriliak-Negami relaxation is an empirical modification of the Debye relaxa
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon(\omega) = \epsilon_{\infty} + \frac{\Delta\epsilon}{\left(1+\left(j\omega t_{0}\right)^{a}\right)^{b}}
|
||||
\\epsilon(\\omega) = \\epsilon_{\\infty} + \\frac{\\Delta\\epsilon}{\\left(1+\\left(j\\omega t_{0}\\right)^{a}\\right)^{b}}
|
||||
|
||||
|
||||
The ``HavriliakNegami`` class has the following structure:
|
||||
@@ -83,8 +83,8 @@ The ``HavriliakNegami`` class has the following structure:
|
||||
|
||||
* ``f_min`` is first bound of the frequency range used to approximate the given function (Hz),
|
||||
* ``f_max`` is second bound of the frequency range used to approximate the given function (Hz),
|
||||
* ``alpha`` is real positive float number which varies 0 < $\alpha$ < 1,
|
||||
* ``beta`` is real positive float number which varies 0 < $\beta$ < 1,
|
||||
* ``alpha`` is real positive float number which varies :math:`0 < \\alpha < 1`,
|
||||
* ``beta`` is real positive float number which varies :math:`0 < \\beta < 1`,
|
||||
* ``e_inf`` is a real part of relative permittivity at infinite frequency,
|
||||
* ``de`` is a difference between the real permittivity at zero and infinite frequency,
|
||||
* ``tau_0`` is a relaxation time (seconds),
|
||||
@@ -106,7 +106,7 @@ Jonscher function is mainly used to describe the dielectric properties of concre
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon(\omega) = \epsilon_{\infty} + a_{p}*\left( -j*\frac{\omega}{\omega_{p}} \right)^{n}
|
||||
\\epsilon(\\omega) = \\epsilon_{\\infty} + a_{p}*\\left( -j*\\frac{\\omega}{\\omega_{p}} \\right)^{n}
|
||||
|
||||
|
||||
The ``Jonscher`` class has the following structure:
|
||||
@@ -136,7 +136,7 @@ CRIM is the most mainstream approach for estimating the bulk permittivity of het
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon(\omega)^{d} = \sum_{i=1}^{m}f_{i}\epsilon_{m,i}(\omega)^{d}
|
||||
\\epsilon(\\omega)^{d} = \\sum_{i=1}^{m}f_{i}\\epsilon_{m,i}(\\omega)^{d}
|
||||
|
||||
|
||||
The ``CRIM`` class has the following structure:
|
||||
|
在新工单中引用
屏蔽一个用户