template for dispersive materials. handles float, double, complex double, complex float field and dispersive arrays separately

这个提交包含在:
John Hartley
2019-07-29 17:46:26 +01:00
父节点 e5d264a127
当前提交 23d870c278
共有 2 个文件被更改,包括 370 次插入0 次删除

52
gprMax/build_templates.py 普通文件
查看文件

@@ -0,0 +1,52 @@
from jinja2 import Environment, PackageLoader, select_autoescape
env = Environment(
loader=PackageLoader(__name__, 'templates'),
)
template = env.get_template('fields_updates_dispersive_template')
r = template.render(
functions=[
# name, double, real
{
'name_a': 'update_electric_dispersive_multipole_A_double_real',
'name_b': 'update_electric_dispersive_multipole_B_double_real',
'name_a_1': 'update_electric_dispersive_1pole_A_double_real',
'name_b_1': 'update_electric_dispersive_1pole_B_double_real',
'field_type': 'double',
'dispersive_type': 'double'
},
# name, float, real
{
'name_a': 'update_electric_dispersive_multipole_A_float_real',
'name_b': 'update_electric_dispersive_multipole_B_float_real',
'name_a_1': 'update_electric_dispersive_1pole_A_float_real',
'name_b_1': 'update_electric_dispersive_1pole_B_float_real',
'field_type': 'float',
'dispersive_type': 'float'
},
# name, double, complex
{
'name_a': 'update_electric_dispersive_multipole_A_double_complex',
'name_b': 'update_electric_dispersive_multipole_B_double_complex',
'name_a_1': 'update_electric_dispersive_1pole_A_double_complex',
'name_b_1': 'update_electric_dispersive_1pole_B_double_complex',
'field_type': 'double',
'dispersive_type': 'double complex',
'real_part': 'creal'
},
# name, float, complex
{
'name_a': 'update_electric_dispersive_multipole_A_float_complex',
'name_b': 'update_electric_dispersive_multipole_B_float_complex',
'name_a_1': 'update_electric_dispersive_1pole_A_float_complex',
'name_b_1': 'update_electric_dispersive_1pole_B_float_complex',
'field_type': 'float',
'dispersive_type': 'float complex',
'real_part': 'crealf'
}]
)
f = open('cython/dispersive_updates_test.pyx', 'w')
f.write(r)
f.close()

查看文件

@@ -0,0 +1,318 @@
# Copyright (C) 2015-2019: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
cimport numpy as np
from cython.parallel import prange
from gprMax.config cimport float_or_double
from gprMax.config cimport real_or_complex
cdef extern from "complex.h" nogil:
double creal(double complex z)
float crealf(float complex z)
#########################################################
# Electric field updates - dispersive materials - multipole A
#########################################################
{% for item in functions %}
cpdef void {{ item.name_a }}(
int nx,
int ny,
int nz,
int nthreads,
int maxpoles,
{{ item.field_type }}[:, ::1] updatecoeffsE,
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
np.uint32_t[:, :, :, ::1] ID,
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
{{ item.field_type }}[:, :, ::1] Ex,
{{ item.field_type }}[:, :, ::1] Ey,
{{ item.field_type }}[:, :, ::1] Ez,
{{ item.field_type }}[:, :, ::1] Hx,
{{ item.field_type }}[:, :, ::1] Hy,
{{ item.field_type }}[:, :, ::1] Hz
):
"""This function updates the electric field components when dispersive materials (with multiple poles) are present.
Args:
nx, ny, nz (int): Grid size in cells
nthreads (int): Number of threads to use
maxpoles (int): Maximum number of poles
updatecoeffs, T, ID, E, H (memoryviews): Access to update coeffients, temporary, ID and field component arrays
"""
cdef Py_ssize_t i, j, k, pole
cdef int material
cdef float phi = 0
# Ex component
if ny != 1 or nz != 1:
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(1, nz):
material = ID[0, i, j, k]
phi = 0
for pole in range(maxpoles):
{% if 'complex' in item.dispersive_type %}
phi = phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3]) * {{ item.real_part }}(Tx[pole, i, j, k])
{% else %}
phi = phi + updatecoeffsdispersive[material, pole * 3] * Tx[pole, i, j, k]
{% endif %}
Tx[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Tx[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ex[i, j, k]
Ex[i, j, k] = updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi
# Ey component
if nx != 1 or nz != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(0, ny):
for k in range(1, nz):
material = ID[1, i, j, k]
phi = 0
for pole in range(maxpoles):
{% if 'complex' in item.dispersive_type %}
phi = phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3]) * {{ item.real_part }}(Ty[pole, i, j, k])
{% else %}
phi = phi + updatecoeffsdispersive[material, pole * 3] * Ty[pole, i, j, k]
{% endif %}
Ty[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Ty[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ey[i, j, k]
Ey[i, j, k] = updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi
# Ez component
if nx != 1 or ny != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(0, nz):
material = ID[2, i, j, k]
phi = 0
for pole in range(maxpoles):
{% if 'complex' in item.dispersive_type %}
phi = phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3]) * {{ item.real_part }}(Tz[pole, i, j, k])
{% else %}
phi = phi + updatecoeffsdispersive[material, pole * 3] * Tz[pole, i, j, k]
{% endif %}
Tz[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Tz[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ez[i, j, k]
Ez[i, j, k] = updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi
{% endfor %}
#########################################################
# Electric field updates - dispersive materials - multipole B
#########################################################
{% for item in functions %}
cpdef void {{ item.name_b }}(
int nx,
int ny,
int nz,
int nthreads,
int maxpoles,
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
np.uint32_t[:, :, :, ::1] ID,
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
{{ item.field_type }}[:, :, ::1] Ex,
{{ item.field_type }}[:, :, ::1] Ey,
{{ item.field_type }}[:, :, ::1] Ez
):
"""This function updates a temporary dispersive material array when disperisive materials (with multiple poles) are present.
Args:
nx, ny, nz (int): Grid size in cells
nthreads (int): Number of threads to use
maxpoles (int): Maximum number of poles
updatecoeffs, T, ID, E (memoryviews): Access to update coeffients, temporary, ID and field component arrays
"""
cdef Py_ssize_t i, j, k, pole
cdef int material
# Ex component
if ny != 1 or nz != 1:
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(1, nz):
material = ID[0, i, j, k]
for pole in range(maxpoles):
Tx[pole, i, j, k] = Tx[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ex[i, j, k]
# Ey component
if nx != 1 or nz != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(0, ny):
for k in range(1, nz):
material = ID[1, i, j, k]
for pole in range(maxpoles):
Ty[pole, i, j, k] = Ty[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ey[i, j, k]
# Ez component
if nx != 1 or ny != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(0, nz):
material = ID[2, i, j, k]
for pole in range(maxpoles):
Tz[pole, i, j, k] = Tz[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ez[i, j, k]
{% endfor %}
#########################################################
# Electric field updates - dispersive materials - single pole A
#########################################################
# one pole
{% for item in functions %}
cpdef void {{ item.name_a_1 }}(
int nx,
int ny,
int nz,
int nthreads,
int maxpoles,
{{ item.field_type }}[:, ::1] updatecoeffsE,
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
np.uint32_t[:, :, :, ::1] ID,
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
{{ item.field_type }}[:, :, ::1] Ex,
{{ item.field_type }}[:, :, ::1] Ey,
{{ item.field_type }}[:, :, ::1] Ez,
{{ item.field_type }}[:, :, ::1] Hx,
{{ item.field_type }}[:, :, ::1] Hy,
{{ item.field_type }}[:, :, ::1] Hz
):
"""This function updates the electric field components when dispersive materials (with 1 pole) are present.
Args:
nx, ny, nz (int): Grid size in cells
nthreads (int): Number of threads to use
maxpoles (int): Maximum number of poles
updatecoeffs, T, ID, E, H (memoryviews): Access to update coeffients, temporary, ID and field component arrays
"""
cdef Py_ssize_t i, j, k
cdef int material
cdef float phi = 0
# Ex component
if ny != 1 or nz != 1:
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(1, nz):
material = ID[0, i, j, k]
{% if 'complex' in item.dispersive_type %}
phi = {{ item.real_part }}(updatecoeffsdispersive[material, 0]) * {{ item.real_part }}(Tx[0, i, j, k])
{% else %}
phi = updatecoeffsdispersive[material, 0] * Tx[0, i, j, k]
{% endif %}
Tx[0, i, j, k] = updatecoeffsdispersive[material, 1] * Tx[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ex[i, j, k]
Ex[i, j, k] = updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi
# Ey component
if nx != 1 or nz != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(0, ny):
for k in range(1, nz):
material = ID[1, i, j, k]
{% if 'complex' in item.dispersive_type %}
phi = {{ item.real_part }}(updatecoeffsdispersive[material, 0]) * {{ item.real_part }}(Ty[0, i, j, k])
{% else %}
phi = updatecoeffsdispersive[material, 0] * Ty[0, i, j, k]
{% endif %}
Ty[0, i, j, k] = updatecoeffsdispersive[material, 1] * Ty[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ey[i, j, k]
Ey[i, j, k] = updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi
# Ez component
if nx != 1 or ny != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(0, nz):
material = ID[2, i, j, k]
{% if 'complex' in item.dispersive_type %}
phi = {{ item.real_part }}(updatecoeffsdispersive[material, 0]) * {{ item.real_part }}(Tz[0, i, j, k])
{% else %}
phi = updatecoeffsdispersive[material, 0] * Tz[0, i, j, k]
{% endif %}
Tz[0, i, j, k] = updatecoeffsdispersive[material, 1] * Tz[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ez[i, j, k]
Ez[i, j, k] = updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi
{% endfor %}
#########################################################
# Electric field updates - dispersive materials - single pole B
#########################################################
{% for item in functions %}
cpdef void {{ item.name_b_1 }}(
int nx,
int ny,
int nz,
int nthreads,
int maxpoles,
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
np.uint32_t[:, :, :, ::1] ID,
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
{{ item.field_type }}[:, :, ::1] Ex,
{{ item.field_type }}[:, :, ::1] Ey,
{{ item.field_type }}[:, :, ::1] Ez
):
"""This function updates a temporary dispersive material array when disperisive materials (with 1 pole) are present.
Args:
nx, ny, nz (int): Grid size in cells
nthreads (int): Number of threads to use
maxpoles (int): Maximum number of poles
updatecoeffs, T, ID, E (memoryviews): Access to update coeffients, temporary, ID and field component arrays
"""
cdef Py_ssize_t i, j, k
cdef int material
# Ex component
if ny != 1 or nz != 1:
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(1, nz):
material = ID[0, i, j, k]
Tx[0, i, j, k] = Tx[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ex[i, j, k]
# Ey component
if nx != 1 or nz != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(0, ny):
for k in range(1, nz):
material = ID[1, i, j, k]
Ty[0, i, j, k] = Ty[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ey[i, j, k]
# Ez component
if nx != 1 or ny != 1:
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
for j in range(1, ny):
for k in range(0, nz):
material = ID[2, i, j, k]
Tz[0, i, j, k] = Tz[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ez[i, j, k]
{% endfor %}