你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
template for dispersive materials. handles float, double, complex double, complex float field and dispersive arrays separately
这个提交包含在:
52
gprMax/build_templates.py
普通文件
52
gprMax/build_templates.py
普通文件
@@ -0,0 +1,52 @@
|
|||||||
|
from jinja2 import Environment, PackageLoader, select_autoescape
|
||||||
|
env = Environment(
|
||||||
|
loader=PackageLoader(__name__, 'templates'),
|
||||||
|
)
|
||||||
|
|
||||||
|
template = env.get_template('fields_updates_dispersive_template')
|
||||||
|
|
||||||
|
r = template.render(
|
||||||
|
functions=[
|
||||||
|
# name, double, real
|
||||||
|
{
|
||||||
|
'name_a': 'update_electric_dispersive_multipole_A_double_real',
|
||||||
|
'name_b': 'update_electric_dispersive_multipole_B_double_real',
|
||||||
|
'name_a_1': 'update_electric_dispersive_1pole_A_double_real',
|
||||||
|
'name_b_1': 'update_electric_dispersive_1pole_B_double_real',
|
||||||
|
'field_type': 'double',
|
||||||
|
'dispersive_type': 'double'
|
||||||
|
},
|
||||||
|
# name, float, real
|
||||||
|
{
|
||||||
|
'name_a': 'update_electric_dispersive_multipole_A_float_real',
|
||||||
|
'name_b': 'update_electric_dispersive_multipole_B_float_real',
|
||||||
|
'name_a_1': 'update_electric_dispersive_1pole_A_float_real',
|
||||||
|
'name_b_1': 'update_electric_dispersive_1pole_B_float_real',
|
||||||
|
'field_type': 'float',
|
||||||
|
'dispersive_type': 'float'
|
||||||
|
},
|
||||||
|
# name, double, complex
|
||||||
|
{
|
||||||
|
'name_a': 'update_electric_dispersive_multipole_A_double_complex',
|
||||||
|
'name_b': 'update_electric_dispersive_multipole_B_double_complex',
|
||||||
|
'name_a_1': 'update_electric_dispersive_1pole_A_double_complex',
|
||||||
|
'name_b_1': 'update_electric_dispersive_1pole_B_double_complex',
|
||||||
|
'field_type': 'double',
|
||||||
|
'dispersive_type': 'double complex',
|
||||||
|
'real_part': 'creal'
|
||||||
|
},
|
||||||
|
# name, float, complex
|
||||||
|
{
|
||||||
|
'name_a': 'update_electric_dispersive_multipole_A_float_complex',
|
||||||
|
'name_b': 'update_electric_dispersive_multipole_B_float_complex',
|
||||||
|
'name_a_1': 'update_electric_dispersive_1pole_A_float_complex',
|
||||||
|
'name_b_1': 'update_electric_dispersive_1pole_B_float_complex',
|
||||||
|
'field_type': 'float',
|
||||||
|
'dispersive_type': 'float complex',
|
||||||
|
'real_part': 'crealf'
|
||||||
|
}]
|
||||||
|
)
|
||||||
|
|
||||||
|
f = open('cython/dispersive_updates_test.pyx', 'w')
|
||||||
|
f.write(r)
|
||||||
|
f.close()
|
@@ -0,0 +1,318 @@
|
|||||||
|
# Copyright (C) 2015-2019: The University of Edinburgh
|
||||||
|
# Authors: Craig Warren and Antonis Giannopoulos
|
||||||
|
#
|
||||||
|
# This file is part of gprMax.
|
||||||
|
#
|
||||||
|
# gprMax is free software: you can redistribute it and/or modify
|
||||||
|
# it under the terms of the GNU General Public License as published by
|
||||||
|
# the Free Software Foundation, either version 3 of the License, or
|
||||||
|
# (at your option) any later version.
|
||||||
|
#
|
||||||
|
# gprMax is distributed in the hope that it will be useful,
|
||||||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
# GNU General Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU General Public License
|
||||||
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
cimport numpy as np
|
||||||
|
from cython.parallel import prange
|
||||||
|
|
||||||
|
from gprMax.config cimport float_or_double
|
||||||
|
from gprMax.config cimport real_or_complex
|
||||||
|
|
||||||
|
cdef extern from "complex.h" nogil:
|
||||||
|
double creal(double complex z)
|
||||||
|
float crealf(float complex z)
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
# Electric field updates - dispersive materials - multipole A
|
||||||
|
#########################################################
|
||||||
|
|
||||||
|
{% for item in functions %}
|
||||||
|
cpdef void {{ item.name_a }}(
|
||||||
|
int nx,
|
||||||
|
int ny,
|
||||||
|
int nz,
|
||||||
|
int nthreads,
|
||||||
|
int maxpoles,
|
||||||
|
{{ item.field_type }}[:, ::1] updatecoeffsE,
|
||||||
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
||||||
|
np.uint32_t[:, :, :, ::1] ID,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ex,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ey,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ez,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Hx,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Hy,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Hz
|
||||||
|
):
|
||||||
|
"""This function updates the electric field components when dispersive materials (with multiple poles) are present.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nx, ny, nz (int): Grid size in cells
|
||||||
|
nthreads (int): Number of threads to use
|
||||||
|
maxpoles (int): Maximum number of poles
|
||||||
|
updatecoeffs, T, ID, E, H (memoryviews): Access to update coeffients, temporary, ID and field component arrays
|
||||||
|
"""
|
||||||
|
|
||||||
|
cdef Py_ssize_t i, j, k, pole
|
||||||
|
cdef int material
|
||||||
|
cdef float phi = 0
|
||||||
|
|
||||||
|
# Ex component
|
||||||
|
if ny != 1 or nz != 1:
|
||||||
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[0, i, j, k]
|
||||||
|
phi = 0
|
||||||
|
for pole in range(maxpoles):
|
||||||
|
{% if 'complex' in item.dispersive_type %}
|
||||||
|
phi = phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3]) * {{ item.real_part }}(Tx[pole, i, j, k])
|
||||||
|
{% else %}
|
||||||
|
phi = phi + updatecoeffsdispersive[material, pole * 3] * Tx[pole, i, j, k]
|
||||||
|
{% endif %}
|
||||||
|
Tx[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Tx[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ex[i, j, k]
|
||||||
|
Ex[i, j, k] = updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi
|
||||||
|
|
||||||
|
# Ey component
|
||||||
|
if nx != 1 or nz != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(0, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[1, i, j, k]
|
||||||
|
phi = 0
|
||||||
|
for pole in range(maxpoles):
|
||||||
|
{% if 'complex' in item.dispersive_type %}
|
||||||
|
phi = phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3]) * {{ item.real_part }}(Ty[pole, i, j, k])
|
||||||
|
{% else %}
|
||||||
|
phi = phi + updatecoeffsdispersive[material, pole * 3] * Ty[pole, i, j, k]
|
||||||
|
{% endif %}
|
||||||
|
Ty[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Ty[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ey[i, j, k]
|
||||||
|
Ey[i, j, k] = updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi
|
||||||
|
|
||||||
|
# Ez component
|
||||||
|
if nx != 1 or ny != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(0, nz):
|
||||||
|
material = ID[2, i, j, k]
|
||||||
|
phi = 0
|
||||||
|
for pole in range(maxpoles):
|
||||||
|
{% if 'complex' in item.dispersive_type %}
|
||||||
|
phi = phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3]) * {{ item.real_part }}(Tz[pole, i, j, k])
|
||||||
|
{% else %}
|
||||||
|
phi = phi + updatecoeffsdispersive[material, pole * 3] * Tz[pole, i, j, k]
|
||||||
|
{% endif %}
|
||||||
|
Tz[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Tz[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ez[i, j, k]
|
||||||
|
Ez[i, j, k] = updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi
|
||||||
|
{% endfor %}
|
||||||
|
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
# Electric field updates - dispersive materials - multipole B
|
||||||
|
#########################################################
|
||||||
|
|
||||||
|
{% for item in functions %}
|
||||||
|
cpdef void {{ item.name_b }}(
|
||||||
|
int nx,
|
||||||
|
int ny,
|
||||||
|
int nz,
|
||||||
|
int nthreads,
|
||||||
|
int maxpoles,
|
||||||
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
||||||
|
np.uint32_t[:, :, :, ::1] ID,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ex,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ey,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ez
|
||||||
|
):
|
||||||
|
"""This function updates a temporary dispersive material array when disperisive materials (with multiple poles) are present.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nx, ny, nz (int): Grid size in cells
|
||||||
|
nthreads (int): Number of threads to use
|
||||||
|
maxpoles (int): Maximum number of poles
|
||||||
|
updatecoeffs, T, ID, E (memoryviews): Access to update coeffients, temporary, ID and field component arrays
|
||||||
|
"""
|
||||||
|
|
||||||
|
cdef Py_ssize_t i, j, k, pole
|
||||||
|
cdef int material
|
||||||
|
|
||||||
|
# Ex component
|
||||||
|
if ny != 1 or nz != 1:
|
||||||
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[0, i, j, k]
|
||||||
|
for pole in range(maxpoles):
|
||||||
|
Tx[pole, i, j, k] = Tx[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ex[i, j, k]
|
||||||
|
|
||||||
|
# Ey component
|
||||||
|
if nx != 1 or nz != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(0, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[1, i, j, k]
|
||||||
|
for pole in range(maxpoles):
|
||||||
|
Ty[pole, i, j, k] = Ty[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ey[i, j, k]
|
||||||
|
|
||||||
|
# Ez component
|
||||||
|
if nx != 1 or ny != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(0, nz):
|
||||||
|
material = ID[2, i, j, k]
|
||||||
|
for pole in range(maxpoles):
|
||||||
|
Tz[pole, i, j, k] = Tz[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ez[i, j, k]
|
||||||
|
|
||||||
|
{% endfor %}
|
||||||
|
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
# Electric field updates - dispersive materials - single pole A
|
||||||
|
#########################################################
|
||||||
|
|
||||||
|
# one pole
|
||||||
|
{% for item in functions %}
|
||||||
|
|
||||||
|
cpdef void {{ item.name_a_1 }}(
|
||||||
|
int nx,
|
||||||
|
int ny,
|
||||||
|
int nz,
|
||||||
|
int nthreads,
|
||||||
|
int maxpoles,
|
||||||
|
{{ item.field_type }}[:, ::1] updatecoeffsE,
|
||||||
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
||||||
|
np.uint32_t[:, :, :, ::1] ID,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ex,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ey,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ez,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Hx,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Hy,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Hz
|
||||||
|
):
|
||||||
|
"""This function updates the electric field components when dispersive materials (with 1 pole) are present.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nx, ny, nz (int): Grid size in cells
|
||||||
|
nthreads (int): Number of threads to use
|
||||||
|
maxpoles (int): Maximum number of poles
|
||||||
|
updatecoeffs, T, ID, E, H (memoryviews): Access to update coeffients, temporary, ID and field component arrays
|
||||||
|
"""
|
||||||
|
|
||||||
|
cdef Py_ssize_t i, j, k
|
||||||
|
cdef int material
|
||||||
|
cdef float phi = 0
|
||||||
|
|
||||||
|
# Ex component
|
||||||
|
if ny != 1 or nz != 1:
|
||||||
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[0, i, j, k]
|
||||||
|
{% if 'complex' in item.dispersive_type %}
|
||||||
|
phi = {{ item.real_part }}(updatecoeffsdispersive[material, 0]) * {{ item.real_part }}(Tx[0, i, j, k])
|
||||||
|
{% else %}
|
||||||
|
phi = updatecoeffsdispersive[material, 0] * Tx[0, i, j, k]
|
||||||
|
{% endif %}
|
||||||
|
Tx[0, i, j, k] = updatecoeffsdispersive[material, 1] * Tx[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ex[i, j, k]
|
||||||
|
Ex[i, j, k] = updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi
|
||||||
|
|
||||||
|
# Ey component
|
||||||
|
if nx != 1 or nz != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(0, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[1, i, j, k]
|
||||||
|
{% if 'complex' in item.dispersive_type %}
|
||||||
|
phi = {{ item.real_part }}(updatecoeffsdispersive[material, 0]) * {{ item.real_part }}(Ty[0, i, j, k])
|
||||||
|
{% else %}
|
||||||
|
phi = updatecoeffsdispersive[material, 0] * Ty[0, i, j, k]
|
||||||
|
{% endif %}
|
||||||
|
Ty[0, i, j, k] = updatecoeffsdispersive[material, 1] * Ty[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ey[i, j, k]
|
||||||
|
Ey[i, j, k] = updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi
|
||||||
|
|
||||||
|
# Ez component
|
||||||
|
if nx != 1 or ny != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(0, nz):
|
||||||
|
material = ID[2, i, j, k]
|
||||||
|
{% if 'complex' in item.dispersive_type %}
|
||||||
|
phi = {{ item.real_part }}(updatecoeffsdispersive[material, 0]) * {{ item.real_part }}(Tz[0, i, j, k])
|
||||||
|
{% else %}
|
||||||
|
phi = updatecoeffsdispersive[material, 0] * Tz[0, i, j, k]
|
||||||
|
{% endif %}
|
||||||
|
Tz[0, i, j, k] = updatecoeffsdispersive[material, 1] * Tz[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ez[i, j, k]
|
||||||
|
Ez[i, j, k] = updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi
|
||||||
|
|
||||||
|
{% endfor %}
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
# Electric field updates - dispersive materials - single pole B
|
||||||
|
#########################################################
|
||||||
|
|
||||||
|
{% for item in functions %}
|
||||||
|
|
||||||
|
cpdef void {{ item.name_b_1 }}(
|
||||||
|
int nx,
|
||||||
|
int ny,
|
||||||
|
int nz,
|
||||||
|
int nthreads,
|
||||||
|
int maxpoles,
|
||||||
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
||||||
|
np.uint32_t[:, :, :, ::1] ID,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
||||||
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ex,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ey,
|
||||||
|
{{ item.field_type }}[:, :, ::1] Ez
|
||||||
|
):
|
||||||
|
"""This function updates a temporary dispersive material array when disperisive materials (with 1 pole) are present.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nx, ny, nz (int): Grid size in cells
|
||||||
|
nthreads (int): Number of threads to use
|
||||||
|
maxpoles (int): Maximum number of poles
|
||||||
|
updatecoeffs, T, ID, E (memoryviews): Access to update coeffients, temporary, ID and field component arrays
|
||||||
|
"""
|
||||||
|
|
||||||
|
cdef Py_ssize_t i, j, k
|
||||||
|
cdef int material
|
||||||
|
|
||||||
|
# Ex component
|
||||||
|
if ny != 1 or nz != 1:
|
||||||
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[0, i, j, k]
|
||||||
|
Tx[0, i, j, k] = Tx[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ex[i, j, k]
|
||||||
|
|
||||||
|
# Ey component
|
||||||
|
if nx != 1 or nz != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(0, ny):
|
||||||
|
for k in range(1, nz):
|
||||||
|
material = ID[1, i, j, k]
|
||||||
|
Ty[0, i, j, k] = Ty[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ey[i, j, k]
|
||||||
|
|
||||||
|
# Ez component
|
||||||
|
if nx != 1 or ny != 1:
|
||||||
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
||||||
|
for j in range(1, ny):
|
||||||
|
for k in range(0, nz):
|
||||||
|
material = ID[2, i, j, k]
|
||||||
|
Tz[0, i, j, k] = Tz[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ez[i, j, k]
|
||||||
|
{% endfor %}
|
在新工单中引用
屏蔽一个用户