Corrected small grammatical mistakes in few files of docs.

这个提交包含在:
Sai Suraj
2023-04-11 19:48:28 +05:30
父节点 05847a8564
当前提交 1edbd8c20b
共有 6 个文件被更改,包括 14 次插入14 次删除

查看文件

@@ -15,7 +15,7 @@ References
.. [GIA2012] Giannopoulos, A. (2012). Unsplit implementation of higher order PMLs. Antennas and Propagation, IEEE Transactions on, 60(3), 1479-1485. (http://dx.doi.org/10.1109/tap.2011.2180344)
.. [HAR2021] Hartley, J., Giannopoulos, A., & Davidson, N. (2022). Switched Huygens Subgridding for the FDTD Method. IEEE Transactions on Antennas and Propagation, 70(8), 6872-6882. (http://dx.doi.org/10.1109/TAP.2022.3161371)
.. [IRE2013] Ireland, D., & Abbosh, A. (2013). Modeling human head at microwave frequencies using optimized Debye models and FDTD method. Antennas and Propagation, IEEE Transactions on, 61(4), 2352-2355. (http://dx.doi.org/10.1109/tap.2013.2242037)
.. [KEL2007] Kelley, D. F., Destan, T. J., & Luebbers, R. J. (2007). Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. IEEE Transactions on Antennas and propagation, 55(7), 1999-2005. (https://doi.org/10.1109/TAP.2007.900230)
.. [KEL2007] Kelley, D. F., Destan, T. J., & Luebbers, R. J. (2007). Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach. IEEE Transactions on Antennas and Propagation, 55(7), 1999-2005. (https://doi.org/10.1109/TAP.2007.900230)
.. [KUN1993] Kunz, K. S., & Luebbers, R. J. (1993). The finite difference time domain method for electromagnetics. CRC press.
.. [LI2013] Li, J., Guo, L. X., Jiao, Y. C., & Wang, R. (2013). Composite scattering of a plasma-coated target above dispersive sea surface by the ADE-FDTD method. Geoscience and Remote Sensing Letters, IEEE, 10(1), 4-8. (http://dx.doi.org/10.1109/lgrs.2012.2189751)
.. [LUE1994] Luebbers, R., Steich, D., & Kunz, K. (1993). FDTD calculation of scattering from frequency-dependent materials. Antennas and Propagation, IEEE Transactions on, 41(9), 1249-1257. (http://dx.doi.org/10.1109/8.247751)