Re-structuring package layout

这个提交包含在:
Craig Warren
2022-11-09 09:29:23 +00:00
父节点 50d17f33ef
当前提交 16df30968e
共有 269 个文件被更改,包括 14 次插入261 次删除

查看文件

@@ -0,0 +1,282 @@
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse
import logging
from pathlib import Path
import h5py
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
from gprMax.receivers import Rx
from gprMax.utilities.utilities import fft_power
logger = logging.getLogger(__name__)
def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
"""Plots electric and magnetic fields and currents from all receiver points
in the given output file. Each receiver point is plotted in a new figure
window.
Args:
filename (string): Filename (including path) of output file.
outputs (list): List of field/current components to plot.
fft (boolean): Plot FFT switch.
Returns:
plt (object): matplotlib plot object.
"""
file = Path(filename)
# Open output file and read iterations
f = h5py.File(file, 'r')
# Paths to grid(s) to traverse for outputs
paths = ['/']
# Check if any subgrids and add path(s)
is_subgrids = "/subgrids" in f
if is_subgrids:
paths = paths + ['/subgrids/' + path + '/' for path in f['/subgrids'].keys()]
# Get number of receivers in grid(s)
nrxs = []
for path in paths:
if f[path].attrs['nrx'] > 0:
nrxs.append(f[path].attrs['nrx'])
else:
paths.remove(path)
# Check there are any receivers
if not paths:
logger.exception(f'No receivers found in {file}')
raise ValueError
# Loop through all grids
for path in paths:
iterations = f[path].attrs['Iterations']
nrx = f[path].attrs['nrx']
dt = f[path].attrs['dt']
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
# Check for single output component when doing a FFT
if fft:
if not len(outputs) == 1:
logger.exception('A single output must be specified when using the -fft option')
raise ValueError
# New plot for each receiver
for rx in range(1, nrx + 1):
rxpath = path + 'rxs/rx' + str(rx) + '/'
availableoutputs = list(f[rxpath].keys())
# If only a single output is required, create one subplot
if len(outputs) == 1:
# Check for polarity of output and if requested output is in file
if outputs[0][-1] == '-':
polarity = -1
outputtext = '-' + outputs[0][0:-1]
output = outputs[0][0:-1]
else:
polarity = 1
outputtext = outputs[0]
output = outputs[0]
if output not in availableoutputs:
logger.exception(f"{output} output requested to plot, but the available output for receiver 1 is {', '.join(availableoutputs)}")
raise ValueError
outputdata = f[rxpath + output][:] * polarity
# Plotting if FFT required
if fft:
# FFT
freqs, power = fft_power(outputdata, dt)
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
# Set plotting range to -60dB from maximum power or 4 times
# frequency at maximum power
try:
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
except:
pltrange = freqmaxpower * 4
pltrange = np.s_[0:pltrange]
# Plot time history of output component
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
figsize=(20, 10), facecolor='w',
edgecolor='w')
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
ax1.set_xlabel('Time [s]')
ax1.set_ylabel(outputtext + ' field strength [V/m]')
ax1.set_xlim([0, np.amax(time)])
ax1.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra
markerline, stemlines, baseline = ax2.stem(freqs[pltrange],
power[pltrange], '-.',
use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
ax2.set_xlabel('Frequency [Hz]')
ax2.set_ylabel('Power [dB]')
ax2.grid(which='both', axis='both', linestyle='-.')
# Change colours and labels for magnetic field components or currents
if 'H' in outputs[0]:
plt.setp(line1, color='g')
plt.setp(line2, color='g')
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
elif 'I' in outputs[0]:
plt.setp(line1, color='b')
plt.setp(line2, color='b')
plt.setp(ax1, ylabel=outputtext + ' current [A]')
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
plt.show()
# Plotting if no FFT required
else:
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]',
ylabel=outputtext + ' field strength [V/m]'),
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
figsize=(20, 10), facecolor='w', edgecolor='w')
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
ax.set_xlim([0, np.amax(time)])
# ax.set_ylim([-15, 20])
ax.grid(which='both', axis='both', linestyle='-.')
if 'H' in output:
plt.setp(line, color='g')
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
elif 'I' in output:
plt.setp(line, color='b')
plt.setp(ax, ylabel=outputtext + ', current [A]')
# If multiple outputs required, create all nine subplots and populate only the specified ones
else:
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'),
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
figsize=(20, 10), facecolor='w', edgecolor='w')
if len(outputs) == 9:
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
else:
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
for output in outputs:
# Check for polarity of output and if requested output is in file
if output[-1] == 'm':
polarity = -1
outputtext = '-' + output[0:-1]
output = output[0:-1]
else:
polarity = 1
outputtext = output
# Check if requested output is in file
if output not in availableoutputs:
logger.exception(f"Output(s) requested to plot: {', '.join(outputs)}, but available output(s) for receiver {rx} in the file: {', '.join(availableoutputs)}")
raise ValueError
outputdata = f[rxpath + output][:] * polarity
if output == 'Ex':
ax = plt.subplot(gs[0, 0])
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [V/m]')
# ax.set_ylim([-15, 20])
elif output == 'Ey':
ax = plt.subplot(gs[1, 0])
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [V/m]')
# ax.set_ylim([-15, 20])
elif output == 'Ez':
ax = plt.subplot(gs[2, 0])
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [V/m]')
# ax.set_ylim([-15, 20])
elif output == 'Hx':
ax = plt.subplot(gs[0, 1])
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [A/m]')
# ax.set_ylim([-0.03, 0.03])
elif output == 'Hy':
ax = plt.subplot(gs[1, 1])
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [A/m]')
# ax.set_ylim([-0.03, 0.03])
elif output == 'Hz':
ax = plt.subplot(gs[2, 1])
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [A/m]')
# ax.set_ylim([-0.03, 0.03])
elif output == 'Ix':
ax = plt.subplot(gs[0, 2])
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', current [A]')
elif output == 'Iy':
ax = plt.subplot(gs[1, 2])
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', current [A]')
elif output == 'Iz':
ax = plt.subplot(gs[2, 2])
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', current [A]')
for ax in fig.axes:
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Save a PDF/PNG of the figure
savename = file.stem + '_rx' + str(rx)
savename = file.parent / savename
# fig.savefig(savename.with_suffix('.pdf'), dpi=None, format='pdf',
# bbox_inches='tight', pad_inches=0.1)
# fig.savefig(savename.with_suffix('.png'), dpi=150, format='png',
# bbox_inches='tight', pad_inches=0.1)
f.close()
return plt
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('--outputs', help='outputs to be plotted',
default=Rx.defaultoutputs,
choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz', 'Ex-', 'Ey-', 'Ez-', 'Hx-', 'Hy-', 'Hz-', 'Ix-', 'Iy-', 'Iz-'],
nargs='+')
parser.add_argument('-fft', action='store_true', help='plot FFT (single output must be specified)',
default=False)
args = parser.parse_args()
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft)
plthandle.show()

查看文件

@@ -0,0 +1,101 @@
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse
import logging
from pathlib import Path
import h5py
import matplotlib.pyplot as plt
import numpy as np
from .outputfiles_merge import get_output_data
logger = logging.getLogger(__name__)
def mpl_plot(filename, outputdata, dt, rxnumber, rxcomponent):
"""Creates a plot (with matplotlib) of the B-scan.
Args:
filename (string): Filename (including path) of output file.
outputdata (array): Array of A-scans, i.e. B-scan data.
dt (float): Temporal resolution of the model.
rxnumber (int): Receiver output number.
rxcomponent (str): Receiver output field/current component.
Returns:
plt (object): matplotlib plot object.
"""
file = Path(filename)
fig = plt.figure(num=file.stem + ' - rx' + str(rxnumber), figsize=(20, 10),
facecolor='w', edgecolor='w')
plt.imshow(outputdata, extent=[0, outputdata.shape[1], outputdata.shape[0] * dt, 0],
interpolation='nearest', aspect='auto', cmap='seismic',
vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata)))
plt.xlabel('Trace number')
plt.ylabel('Time [s]')
# Grid properties
ax = fig.gca()
ax.grid(which='both', axis='both', linestyle='-.')
cb = plt.colorbar()
if 'E' in rxcomponent:
cb.set_label('Field strength [V/m]')
elif 'H' in rxcomponent:
cb.set_label('Field strength [A/m]')
elif 'I' in rxcomponent:
cb.set_label('Current [A]')
# Save a PDF/PNG of the figure
# fig.savefig(file.with_suffix('.pdf'), dpi=None, format='pdf',
# bbox_inches='tight', pad_inches=0.1)
# fig.savefig(file.with_suffix('.png'), dpi=150, format='png',
# bbox_inches='tight', pad_inches=0.1)
return plt
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots a B-scan image.',
usage='cd gprMax; python -m tools.plot_Bscan outputfile output')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('rx_component', help='name of output component to be plotted',
choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz'])
args = parser.parse_args()
# Open output file and read number of outputs (receivers)
f = h5py.File(args.outputfile, 'r')
nrx = f.attrs['nrx']
f.close()
# Check there are any receivers
if nrx == 0:
logger.exception(f'No receivers found in {args.outputfile}')
raise ValueError
for rx in range(1, nrx + 1):
outputdata, dt = get_output_data(args.outputfile, rx, args.rx_component)
plthandle = mpl_plot(args.outputfile, outputdata, dt, rx, args.rx_component)
plthandle.show()

查看文件

@@ -0,0 +1,446 @@
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse
import logging
from pathlib import Path
import h5py
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
logger = logging.getLogger(__name__)
def calculate_antenna_params(filename, tltxnumber=1, tlrxnumber=None, rxnumber=None, rxcomponent=None):
"""Calculates antenna parameters - incident, reflected and total volatges
and currents; s11, (s21) and input impedance.
Args:
filename (string): Filename (including path) of output file.
tltxnumber (int): Transmitter antenna - transmission line number
tlrxnumber (int): Receiver antenna - transmission line number
rxnumber (int): Receiver antenna - output number
rxcomponent (str): Receiver antenna - output electric field component
Returns:
antennaparams (dict): Antenna parameters.
"""
# Open output file and read some attributes
file = Path(filename)
f = h5py.File(file, 'r')
dxdydz = f.attrs['dx_dy_dz']
dt = f.attrs['dt']
iterations = f.attrs['Iterations']
# Calculate time array and frequency bin spacing
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
df = 1 / np.amax(time)
logger.info(f'Time window: {np.amax(time):g} s ({iterations} iterations)')
logger.info(f'Time step: {dt:g} s')
logger.info(f'Frequency bin spacing: {df:g} Hz')
# Read/calculate voltages and currents from transmitter antenna
tltxpath = '/tls/tl' + str(tltxnumber) + '/'
# Incident voltages/currents
Vinc = f[tltxpath + 'Vinc'][:]
Iinc = f[tltxpath + 'Iinc'][:]
# Total (incident + reflected) voltages/currents
Vtotal = f[tltxpath + 'Vtotal'][:]
Itotal = f[tltxpath + 'Itotal'][:]
# Reflected voltages/currents
Vref = Vtotal - Vinc
Iref = Itotal - Iinc
# If a receiver antenna is used (with a transmission line or receiver), get received voltage for s21
if tlrxnumber:
tlrxpath = '/tls/tl' + str(tlrxnumber) + '/'
Vrec = f[tlrxpath + 'Vtotal'][:]
elif rxnumber:
rxpath = '/rxs/rx' + str(rxnumber) + '/'
availableoutputs = list(f[rxpath].keys())
if rxcomponent not in availableoutputs:
logger.exception(f"{rxcomponent} output requested, but the available output for receiver {rxnumber} is {', '.join(availableoutputs)}")
raise ValueError
rxpath += rxcomponent
# Received voltage
if rxcomponent == 'Ex':
Vrec = f[rxpath][:] * -1 * dxdydz[0]
elif rxcomponent == 'Ey':
Vrec = f[rxpath][:] * -1 * dxdydz[1]
elif rxcomponent == 'Ez':
Vrec = f[rxpath][:] * -1 * dxdydz[2]
f.close()
# Frequency bins
freqs = np.fft.fftfreq(Vinc.size, d=dt)
# Delay correction - current lags voltage, so delay voltage to match current timestep
delaycorrection = np.exp(1j * 2 * np.pi * freqs * (dt / 2))
# Calculate s11 and (optionally) s21
s11 = np.abs(np.fft.fft(Vref) / np.fft.fft(Vinc))
if tlrxnumber or rxnumber:
s21 = np.abs(np.fft.fft(Vrec) / np.fft.fft(Vinc))
# Calculate input impedance
zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal)
# Calculate input admittance
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
# Convert to decibels (ignore warning from taking a log of any zero values)
with np.errstate(divide='ignore'):
Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection)))
Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc)))
Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection)))
Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref)))
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
s11 = 20 * np.log10(s11)
# Replace any NaNs or Infs from zero division
Vincp[np.invert(np.isfinite(Vincp))] = 0
Iincp[np.invert(np.isfinite(Iincp))] = 0
Vrefp[np.invert(np.isfinite(Vrefp))] = 0
Irefp[np.invert(np.isfinite(Irefp))] = 0
Vtotalp[np.invert(np.isfinite(Vtotalp))] = 0
Itotalp[np.invert(np.isfinite(Itotalp))] = 0
s11[np.invert(np.isfinite(s11))] = 0
# Create dictionary of antenna parameters
antennaparams = {'time': time, 'freqs': freqs, 'Vinc': Vinc, 'Vincp': Vincp, 'Iinc': Iinc, 'Iincp': Iincp,
'Vref': Vref, 'Vrefp': Vrefp, 'Iref': Iref, 'Irefp': Irefp,
'Vtotal': Vtotal, 'Vtotalp': Vtotalp, 'Itotal': Itotal, 'Itotalp': Itotalp,
's11': s11, 'zin': zin, 'yin': yin}
if tlrxnumber or rxnumber:
with np.errstate(divide='ignore'): # Ignore warning from taking a log of any zero values
s21 = 20 * np.log10(s21)
s21[np.invert(np.isfinite(s21))] = 0
antennaparams['s21'] = s21
return antennaparams
def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref, Irefp, Vtotal, Vtotalp, Itotal, Itotalp, s11, zin, yin, s21=None):
"""Plots antenna parameters - incident, reflected and total volatges and
currents; s11, (s21) and input impedance.
Args:
filename (string): Filename (including path) of output file.
time (array): Simulation time.
freq (array): Frequencies for FFTs.
Vinc, Vincp, Iinc, Iincp (array): Time and frequency domain representations of incident voltage and current.
Vref, Vrefp, Iref, Irefp (array): Time and frequency domain representations of reflected voltage and current.
Vtotal, Vtotalp, Itotal, Itotalp (array): Time and frequency domain representations of total voltage and current.
s11, s21 (array): s11 and, optionally, s21 parameters.
zin, yin (array): Input impedance and input admittance parameters.
Returns:
plt (object): matplotlib plot object.
"""
# Set plotting range
pltrangemin = 1
# To a certain drop from maximum power
pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1
# To a maximum frequency
pltrangemax = np.where(freqs > 3e9)[0][0]
pltrange = np.s_[pltrangemin:pltrangemax]
# Print some useful values from s11, and input impedance
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
logger.info(f's11 minimum: {np.amin(s11[pltrange]):g} dB at {freqs[s11minfreq + pltrangemin]:g} Hz')
logger.info(f'At {freqs[s11minfreq + pltrangemin]:g} Hz...')
logger.info(f'Input impedance: {np.abs(zin[s11minfreq + pltrangemin]):.1f}{zin[s11minfreq + pltrangemin].imag:+.1f}j Ohms')
# logger.info(f'Input admittance (mag): {np.abs(yin[s11minfreq + pltrangemin]):g} S')
# logger.info(f'Input admittance (phase): {np.angle(yin[s11minfreq + pltrangemin], deg=True):.1f} deg')
# Figure 1
# Plot incident voltage
fig1, ax = plt.subplots(num='Transmitter transmission line parameters',
figsize=(20, 12), facecolor='w', edgecolor='w')
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
ax = plt.subplot(gs1[0, 0])
ax.plot(time, Vinc, 'r', lw=2, label='Vinc')
ax.set_title('Incident voltage')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Voltage [V]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of incident voltage
ax = plt.subplot(gs1[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange],
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2)
ax.set_title('Incident voltage')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot incident current
ax = plt.subplot(gs1[1, 0])
ax.plot(time, Iinc, 'b', lw=2, label='Vinc')
ax.set_title('Incident current')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Current [A]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of incident current
ax = plt.subplot(gs1[1, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange],
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2)
ax.set_title('Incident current')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot total voltage
ax = plt.subplot(gs1[2, 0])
ax.plot(time, Vtotal, 'r', lw=2, label='Vinc')
ax.set_title('Total (incident + reflected) voltage')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Voltage [V]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of total voltage
ax = plt.subplot(gs1[2, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange],
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2)
ax.set_title('Total (incident + reflected) voltage')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot total current
ax = plt.subplot(gs1[3, 0])
ax.plot(time, Itotal, 'b', lw=2, label='Vinc')
ax.set_title('Total (incident + reflected) current')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Current [A]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of total current
ax = plt.subplot(gs1[3, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange],
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2)
ax.set_title('Total (incident + reflected) current')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot reflected (reflected) voltage
# ax = plt.subplot(gs1[4, 0])
# ax.plot(time, Vref, 'r', lw=2, label='Vref')
# ax.set_title('Reflected voltage')
# ax.set_xlabel('Time [s]')
# ax.set_ylabel('Voltage [V]')
# ax.set_xlim([0, np.amax(time)])
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of reflected voltage
# ax = plt.subplot(gs1[4, 1])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange],
# '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'r')
# plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
# ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
# ax.set_title('Reflected voltage')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Power [dB]')
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot reflected (reflected) current
# ax = plt.subplot(gs1[5, 0])
# ax.plot(time, Iref, 'b', lw=2, label='Iref')
# ax.set_title('Reflected current')
# ax.set_xlabel('Time [s]')
# ax.set_ylabel('Current [A]')
# ax.set_xlim([0, np.amax(time)])
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of reflected current
# ax = plt.subplot(gs1[5, 1])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange],
# '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'b')
# plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
# ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
# ax.set_title('Reflected current')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Power [dB]')
# ax.grid(which='both', axis='both', linestyle='-.')
# Figure 2
# Plot frequency spectra of s11
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12),
facecolor='w', edgecolor='w')
gs2 = gridspec.GridSpec(2, 2, hspace=0.3)
ax = plt.subplot(gs2[0, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange],
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2)
ax.set_title('s11')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
# ax.set_xlim([0, 5e9])
# ax.set_ylim([-25, 0])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of s21
if s21 is not None:
ax = plt.subplot(gs2[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange],
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
ax.set_title('s21')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([-25, 50])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot input resistance (real part of impedance)
ax = plt.subplot(gs2[1, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real,
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2)
ax.set_title('Input impedance (resistive)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Resistance [Ohms]')
# ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim(bottom=0)
# ax.set_ylim([0, 300])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot input reactance (imaginery part of impedance)
ax = plt.subplot(gs2[1, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag,
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2)
ax.set_title('Input impedance (reactive)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Reactance [Ohms]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([-300, 300])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot input admittance (magnitude)
# ax = plt.subplot(gs2[2, 0])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]),
# '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'g')
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
# ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
# ax.set_title('Input admittance (magnitude)')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Admittance [Siemens]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([0, 0.035])
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot input admittance (phase)
# ax = plt.subplot(gs2[2, 1])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True),
# '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'g')
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
# ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
# ax.set_title('Input admittance (phase)')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Phase [degrees]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([-40, 100])
# ax.grid(which='both', axis='both', linestyle='-.')
# Save a PDF/PNG of the figure
savename1 = filename.stem + '_tl_params'
savename1 = filename.parent / savename1
savename2 = filename.stem + '_ant_params'
savename2 = filename.parent / savename2
# fig1.savefig(savename1.with_suffix('.png'), dpi=150, format='png',
# bbox_inches='tight', pad_inches=0.1)
# fig2.savefig(savename2.with_suffix('.png'), dpi=150, format='png',
# bbox_inches='tight', pad_inches=0.1)
# fig1.savefig(savename1.with_suffix('.pdf'), dpi=None, format='pdf',
# bbox_inches='tight', pad_inches=0.1)
# fig2.savefig(savename2.with_suffix('.pdf'), dpi=None, format='pdf',
# bbox_inches='tight', pad_inches=0.1)
return plt
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11, s21 parameters and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('--tltx-num', default=1, type=int, help='transmitter antenna - transmission line number')
parser.add_argument('--tlrx-num', type=int, help='receiver antenna - transmission line number')
parser.add_argument('--rx-num', type=int, help='receiver antenna - output number')
parser.add_argument('--rx-component', type=str, help='receiver antenna - output electric field component', choices=['Ex', 'Ey', 'Ez'])
args = parser.parse_args()
antennaparams = calculate_antenna_params(args.outputfile, args.tltx_num, args.tlrx_num, args.rx_num, args.rx_component)
plthandle = mpl_plot(args.outputfile, **antennaparams)
plthandle.show()

查看文件

@@ -0,0 +1,184 @@
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
from gprMax.utilities.utilities import fft_power, round_value
from gprMax.waveforms import Waveform
logger = logging.getLogger(__name__)
def check_timewindow(timewindow, dt):
"""Checks and sets time window and number of iterations.
Args:
timewindow (float): Time window.
dt (float): Time discretisation.
Returns:
timewindow (float): Time window.
iterations (int): Number of interations.
"""
# Time window could be a string, float or int, so convert to string then check
timewindow = str(timewindow)
try:
timewindow = int(timewindow)
iterations = timewindow
timewindow = (timewindow - 1) * dt
except:
timewindow = float(timewindow)
if timewindow > 0:
iterations = round_value((timewindow / dt)) + 1
else:
logger.exception('Time window must have a value greater than zero')
raise ValueError
return timewindow, iterations
def mpl_plot(w, timewindow, dt, iterations, fft=False):
"""Plots waveform and prints useful information about its properties.
Args:
w (class): Waveform class instance.
timewindow (float): Time window.
dt (float): Time discretisation.
iterations (int): Number of iterations.
fft (boolean): Plot FFT switch.
Returns:
plt (object): matplotlib plot object.
"""
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
waveform = np.zeros(len(time))
timeiter = np.nditer(time, flags=['c_index'])
while not timeiter.finished:
waveform[timeiter.index] = w.calculate_value(timeiter[0], dt)
timeiter.iternext()
logger.info('Waveform characteristics...')
logger.info(f'Type: {w.type}')
logger.info(f'Maximum (absolute) amplitude: {np.max(np.abs(waveform)):g}')
if w.freq and not w.type == 'gaussian':
logger.info(f'Centre frequency: {w.freq:g} Hz')
if (w.type == 'gaussian' or w.type == 'gaussiandot' or w.type == 'gaussiandotnorm'
or w.type == 'gaussianprime' or w.type == 'gaussiandoubleprime'):
delay = 1 / w.freq
logger.info(f'Time to centre of pulse: {delay:g} s')
elif w.type == 'gaussiandotdot' or w.type == 'gaussiandotdotnorm' or w.type == 'ricker':
delay = np.sqrt(2) / w.freq
logger.info(f'Time to centre of pulse: {delay:g} s')
logger.info(f'Time window: {timewindow:g} s ({iterations} iterations)')
logger.info(f'Time step: {dt:g} s')
if fft:
# FFT
freqs, power = fft_power(waveform, dt)
# Set plotting range to 4 times frequency at max power of waveform or
# 4 times the centre frequency
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
if freqs[freqmaxpower] > w.freq:
pltrange = np.where(freqs > 4 * freqs[freqmaxpower])[0][0]
else:
pltrange = np.where(freqs > 4 * w.freq)[0][0]
pltrange = np.s_[0:pltrange]
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num=w.type,
figsize=(20, 10), facecolor='w',
edgecolor='w')
# Plot waveform
ax1.plot(time, waveform, 'r', lw=2)
ax1.set_xlabel('Time [s]')
ax1.set_ylabel('Amplitude')
# Plot frequency spectra
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange],
'-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
ax2.set_xlabel('Frequency [Hz]')
ax2.set_ylabel('Power [dB]')
else:
fig, ax1 = plt.subplots(num=w.type, figsize=(20, 10), facecolor='w',
edgecolor='w')
# Plot waveform
ax1.plot(time, waveform, 'r', lw=2)
ax1.set_xlabel('Time [s]')
ax1.set_ylabel('Amplitude')
# Turn on grid
[ax.grid(which='both', axis='both', linestyle='-.') for ax in fig.axes]
# Save a PDF/PNG of the figure
savefile = Path(__file__).parent / w.type
# fig.savefig(savefile.with_suffix('.pdf'), dpi=None, format='pdf',
# bbox_inches='tight', pad_inches=0.1)
# fig.savefig(savefile.with_suffix('.png'), dpi=150, format='png',
# bbox_inches='tight', pad_inches=0.1)
return plt
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plot built-in waveforms that can be used for sources.', usage='cd gprMax; python -m tools.plot_source_wave type amp freq timewindow dt')
parser.add_argument('type', help='type of waveform', choices=Waveform.types)
parser.add_argument('amp', type=float, help='amplitude of waveform')
parser.add_argument('freq', type=float, help='centre frequency of waveform')
parser.add_argument('timewindow', help='time window to view waveform')
parser.add_argument('dt', type=float, help='time step to view waveform')
parser.add_argument('-fft', action='store_true', help='plot FFT of waveform', default=False)
args = parser.parse_args()
# Check waveform parameters
if args.type.lower() not in Waveform.types:
logger.exception(f"The waveform must have one of the following types {', '.join(Waveform.types)}")
raise ValueError
if args.freq <= 0:
logger.exception('The waveform requires an excitation frequency value of greater than zero')
raise ValueError
# Create waveform instance
w = Waveform()
w.type = args.type
w.amp = args.amp
w.freq = args.freq
timewindow, iterations = check_timewindow(args.timewindow, args.dt)
plthandle = mpl_plot(w, timewindow, args.dt, iterations, args.fft)
plthandle.show()