你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 23:14:03 +08:00
Re-structuring package layout
这个提交包含在:
282
toolboxes/Plotting/plot_Ascan.py
普通文件
282
toolboxes/Plotting/plot_Ascan.py
普通文件
@@ -0,0 +1,282 @@
|
||||
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import h5py
|
||||
import matplotlib.gridspec as gridspec
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gprMax.receivers import Rx
|
||||
from gprMax.utilities.utilities import fft_power
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
||||
"""Plots electric and magnetic fields and currents from all receiver points
|
||||
in the given output file. Each receiver point is plotted in a new figure
|
||||
window.
|
||||
|
||||
Args:
|
||||
filename (string): Filename (including path) of output file.
|
||||
outputs (list): List of field/current components to plot.
|
||||
fft (boolean): Plot FFT switch.
|
||||
|
||||
Returns:
|
||||
plt (object): matplotlib plot object.
|
||||
"""
|
||||
|
||||
file = Path(filename)
|
||||
|
||||
# Open output file and read iterations
|
||||
f = h5py.File(file, 'r')
|
||||
|
||||
# Paths to grid(s) to traverse for outputs
|
||||
paths = ['/']
|
||||
|
||||
# Check if any subgrids and add path(s)
|
||||
is_subgrids = "/subgrids" in f
|
||||
if is_subgrids:
|
||||
paths = paths + ['/subgrids/' + path + '/' for path in f['/subgrids'].keys()]
|
||||
|
||||
# Get number of receivers in grid(s)
|
||||
nrxs = []
|
||||
for path in paths:
|
||||
if f[path].attrs['nrx'] > 0:
|
||||
nrxs.append(f[path].attrs['nrx'])
|
||||
else:
|
||||
paths.remove(path)
|
||||
|
||||
# Check there are any receivers
|
||||
if not paths:
|
||||
logger.exception(f'No receivers found in {file}')
|
||||
raise ValueError
|
||||
|
||||
# Loop through all grids
|
||||
for path in paths:
|
||||
iterations = f[path].attrs['Iterations']
|
||||
nrx = f[path].attrs['nrx']
|
||||
dt = f[path].attrs['dt']
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
|
||||
# Check for single output component when doing a FFT
|
||||
if fft:
|
||||
if not len(outputs) == 1:
|
||||
logger.exception('A single output must be specified when using the -fft option')
|
||||
raise ValueError
|
||||
|
||||
# New plot for each receiver
|
||||
for rx in range(1, nrx + 1):
|
||||
rxpath = path + 'rxs/rx' + str(rx) + '/'
|
||||
availableoutputs = list(f[rxpath].keys())
|
||||
|
||||
# If only a single output is required, create one subplot
|
||||
if len(outputs) == 1:
|
||||
|
||||
# Check for polarity of output and if requested output is in file
|
||||
if outputs[0][-1] == '-':
|
||||
polarity = -1
|
||||
outputtext = '-' + outputs[0][0:-1]
|
||||
output = outputs[0][0:-1]
|
||||
else:
|
||||
polarity = 1
|
||||
outputtext = outputs[0]
|
||||
output = outputs[0]
|
||||
|
||||
if output not in availableoutputs:
|
||||
logger.exception(f"{output} output requested to plot, but the available output for receiver 1 is {', '.join(availableoutputs)}")
|
||||
raise ValueError
|
||||
|
||||
outputdata = f[rxpath + output][:] * polarity
|
||||
|
||||
# Plotting if FFT required
|
||||
if fft:
|
||||
# FFT
|
||||
freqs, power = fft_power(outputdata, dt)
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
|
||||
# Set plotting range to -60dB from maximum power or 4 times
|
||||
# frequency at maximum power
|
||||
try:
|
||||
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
||||
except:
|
||||
pltrange = freqmaxpower * 4
|
||||
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
# Plot time history of output component
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
||||
ax1.set_xlim([0, np.amax(time)])
|
||||
ax1.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange],
|
||||
power[pltrange], '-.',
|
||||
use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||||
ax2.set_xlabel('Frequency [Hz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
ax2.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Change colours and labels for magnetic field components or currents
|
||||
if 'H' in outputs[0]:
|
||||
plt.setp(line1, color='g')
|
||||
plt.setp(line2, color='g')
|
||||
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
elif 'I' in outputs[0]:
|
||||
plt.setp(line1, color='b')
|
||||
plt.setp(line2, color='b')
|
||||
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
|
||||
plt.show()
|
||||
|
||||
# Plotting if no FFT required
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]',
|
||||
ylabel=outputtext + ' field strength [V/m]'),
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
# ax.set_ylim([-15, 20])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
if 'H' in output:
|
||||
plt.setp(line, color='g')
|
||||
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
||||
elif 'I' in output:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
||||
|
||||
# If multiple outputs required, create all nine subplots and populate only the specified ones
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'),
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
if len(outputs) == 9:
|
||||
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
||||
else:
|
||||
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
||||
|
||||
for output in outputs:
|
||||
# Check for polarity of output and if requested output is in file
|
||||
if output[-1] == 'm':
|
||||
polarity = -1
|
||||
outputtext = '-' + output[0:-1]
|
||||
output = output[0:-1]
|
||||
else:
|
||||
polarity = 1
|
||||
outputtext = output
|
||||
|
||||
# Check if requested output is in file
|
||||
if output not in availableoutputs:
|
||||
logger.exception(f"Output(s) requested to plot: {', '.join(outputs)}, but available output(s) for receiver {rx} in the file: {', '.join(availableoutputs)}")
|
||||
raise ValueError
|
||||
|
||||
outputdata = f[rxpath + output][:] * polarity
|
||||
|
||||
if output == 'Ex':
|
||||
ax = plt.subplot(gs[0, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ey':
|
||||
ax = plt.subplot(gs[1, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ez':
|
||||
ax = plt.subplot(gs[2, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Hx':
|
||||
ax = plt.subplot(gs[0, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hy':
|
||||
ax = plt.subplot(gs[1, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hz':
|
||||
ax = plt.subplot(gs[2, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Ix':
|
||||
ax = plt.subplot(gs[0, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iy':
|
||||
ax = plt.subplot(gs[1, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iz':
|
||||
ax = plt.subplot(gs[2, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
for ax in fig.axes:
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
savename = file.stem + '_rx' + str(rx)
|
||||
savename = file.parent / savename
|
||||
# fig.savefig(savename.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(savename.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
f.close()
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('--outputs', help='outputs to be plotted',
|
||||
default=Rx.defaultoutputs,
|
||||
choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz', 'Ex-', 'Ey-', 'Ez-', 'Hx-', 'Hy-', 'Hz-', 'Ix-', 'Iy-', 'Iz-'],
|
||||
nargs='+')
|
||||
parser.add_argument('-fft', action='store_true', help='plot FFT (single output must be specified)',
|
||||
default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft)
|
||||
plthandle.show()
|
101
toolboxes/Plotting/plot_Bscan.py
普通文件
101
toolboxes/Plotting/plot_Bscan.py
普通文件
@@ -0,0 +1,101 @@
|
||||
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import h5py
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from .outputfiles_merge import get_output_data
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def mpl_plot(filename, outputdata, dt, rxnumber, rxcomponent):
|
||||
"""Creates a plot (with matplotlib) of the B-scan.
|
||||
|
||||
Args:
|
||||
filename (string): Filename (including path) of output file.
|
||||
outputdata (array): Array of A-scans, i.e. B-scan data.
|
||||
dt (float): Temporal resolution of the model.
|
||||
rxnumber (int): Receiver output number.
|
||||
rxcomponent (str): Receiver output field/current component.
|
||||
|
||||
Returns:
|
||||
plt (object): matplotlib plot object.
|
||||
"""
|
||||
|
||||
file = Path(filename)
|
||||
|
||||
fig = plt.figure(num=file.stem + ' - rx' + str(rxnumber), figsize=(20, 10),
|
||||
facecolor='w', edgecolor='w')
|
||||
plt.imshow(outputdata, extent=[0, outputdata.shape[1], outputdata.shape[0] * dt, 0],
|
||||
interpolation='nearest', aspect='auto', cmap='seismic',
|
||||
vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata)))
|
||||
plt.xlabel('Trace number')
|
||||
plt.ylabel('Time [s]')
|
||||
|
||||
# Grid properties
|
||||
ax = fig.gca()
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
cb = plt.colorbar()
|
||||
if 'E' in rxcomponent:
|
||||
cb.set_label('Field strength [V/m]')
|
||||
elif 'H' in rxcomponent:
|
||||
cb.set_label('Field strength [A/m]')
|
||||
elif 'I' in rxcomponent:
|
||||
cb.set_label('Current [A]')
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
# fig.savefig(file.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(file.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots a B-scan image.',
|
||||
usage='cd gprMax; python -m tools.plot_Bscan outputfile output')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('rx_component', help='name of output component to be plotted',
|
||||
choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz'])
|
||||
args = parser.parse_args()
|
||||
|
||||
# Open output file and read number of outputs (receivers)
|
||||
f = h5py.File(args.outputfile, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
f.close()
|
||||
|
||||
# Check there are any receivers
|
||||
if nrx == 0:
|
||||
logger.exception(f'No receivers found in {args.outputfile}')
|
||||
raise ValueError
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
outputdata, dt = get_output_data(args.outputfile, rx, args.rx_component)
|
||||
plthandle = mpl_plot(args.outputfile, outputdata, dt, rx, args.rx_component)
|
||||
|
||||
plthandle.show()
|
@@ -0,0 +1,446 @@
|
||||
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import h5py
|
||||
import matplotlib.gridspec as gridspec
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def calculate_antenna_params(filename, tltxnumber=1, tlrxnumber=None, rxnumber=None, rxcomponent=None):
|
||||
"""Calculates antenna parameters - incident, reflected and total volatges
|
||||
and currents; s11, (s21) and input impedance.
|
||||
|
||||
Args:
|
||||
filename (string): Filename (including path) of output file.
|
||||
tltxnumber (int): Transmitter antenna - transmission line number
|
||||
tlrxnumber (int): Receiver antenna - transmission line number
|
||||
rxnumber (int): Receiver antenna - output number
|
||||
rxcomponent (str): Receiver antenna - output electric field component
|
||||
|
||||
Returns:
|
||||
antennaparams (dict): Antenna parameters.
|
||||
"""
|
||||
|
||||
# Open output file and read some attributes
|
||||
file = Path(filename)
|
||||
f = h5py.File(file, 'r')
|
||||
dxdydz = f.attrs['dx_dy_dz']
|
||||
dt = f.attrs['dt']
|
||||
iterations = f.attrs['Iterations']
|
||||
|
||||
# Calculate time array and frequency bin spacing
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
df = 1 / np.amax(time)
|
||||
|
||||
logger.info(f'Time window: {np.amax(time):g} s ({iterations} iterations)')
|
||||
logger.info(f'Time step: {dt:g} s')
|
||||
logger.info(f'Frequency bin spacing: {df:g} Hz')
|
||||
|
||||
# Read/calculate voltages and currents from transmitter antenna
|
||||
tltxpath = '/tls/tl' + str(tltxnumber) + '/'
|
||||
|
||||
# Incident voltages/currents
|
||||
Vinc = f[tltxpath + 'Vinc'][:]
|
||||
Iinc = f[tltxpath + 'Iinc'][:]
|
||||
|
||||
# Total (incident + reflected) voltages/currents
|
||||
Vtotal = f[tltxpath + 'Vtotal'][:]
|
||||
Itotal = f[tltxpath + 'Itotal'][:]
|
||||
|
||||
# Reflected voltages/currents
|
||||
Vref = Vtotal - Vinc
|
||||
Iref = Itotal - Iinc
|
||||
|
||||
# If a receiver antenna is used (with a transmission line or receiver), get received voltage for s21
|
||||
if tlrxnumber:
|
||||
tlrxpath = '/tls/tl' + str(tlrxnumber) + '/'
|
||||
Vrec = f[tlrxpath + 'Vtotal'][:]
|
||||
|
||||
elif rxnumber:
|
||||
rxpath = '/rxs/rx' + str(rxnumber) + '/'
|
||||
availableoutputs = list(f[rxpath].keys())
|
||||
|
||||
if rxcomponent not in availableoutputs:
|
||||
logger.exception(f"{rxcomponent} output requested, but the available output for receiver {rxnumber} is {', '.join(availableoutputs)}")
|
||||
raise ValueError
|
||||
|
||||
rxpath += rxcomponent
|
||||
|
||||
# Received voltage
|
||||
if rxcomponent == 'Ex':
|
||||
Vrec = f[rxpath][:] * -1 * dxdydz[0]
|
||||
elif rxcomponent == 'Ey':
|
||||
Vrec = f[rxpath][:] * -1 * dxdydz[1]
|
||||
elif rxcomponent == 'Ez':
|
||||
Vrec = f[rxpath][:] * -1 * dxdydz[2]
|
||||
f.close()
|
||||
|
||||
# Frequency bins
|
||||
freqs = np.fft.fftfreq(Vinc.size, d=dt)
|
||||
|
||||
# Delay correction - current lags voltage, so delay voltage to match current timestep
|
||||
delaycorrection = np.exp(1j * 2 * np.pi * freqs * (dt / 2))
|
||||
|
||||
# Calculate s11 and (optionally) s21
|
||||
s11 = np.abs(np.fft.fft(Vref) / np.fft.fft(Vinc))
|
||||
if tlrxnumber or rxnumber:
|
||||
s21 = np.abs(np.fft.fft(Vrec) / np.fft.fft(Vinc))
|
||||
|
||||
# Calculate input impedance
|
||||
zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal)
|
||||
|
||||
# Calculate input admittance
|
||||
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
|
||||
|
||||
# Convert to decibels (ignore warning from taking a log of any zero values)
|
||||
with np.errstate(divide='ignore'):
|
||||
Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection)))
|
||||
Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc)))
|
||||
Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection)))
|
||||
Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref)))
|
||||
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
|
||||
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
|
||||
s11 = 20 * np.log10(s11)
|
||||
|
||||
# Replace any NaNs or Infs from zero division
|
||||
Vincp[np.invert(np.isfinite(Vincp))] = 0
|
||||
Iincp[np.invert(np.isfinite(Iincp))] = 0
|
||||
Vrefp[np.invert(np.isfinite(Vrefp))] = 0
|
||||
Irefp[np.invert(np.isfinite(Irefp))] = 0
|
||||
Vtotalp[np.invert(np.isfinite(Vtotalp))] = 0
|
||||
Itotalp[np.invert(np.isfinite(Itotalp))] = 0
|
||||
s11[np.invert(np.isfinite(s11))] = 0
|
||||
|
||||
# Create dictionary of antenna parameters
|
||||
antennaparams = {'time': time, 'freqs': freqs, 'Vinc': Vinc, 'Vincp': Vincp, 'Iinc': Iinc, 'Iincp': Iincp,
|
||||
'Vref': Vref, 'Vrefp': Vrefp, 'Iref': Iref, 'Irefp': Irefp,
|
||||
'Vtotal': Vtotal, 'Vtotalp': Vtotalp, 'Itotal': Itotal, 'Itotalp': Itotalp,
|
||||
's11': s11, 'zin': zin, 'yin': yin}
|
||||
if tlrxnumber or rxnumber:
|
||||
with np.errstate(divide='ignore'): # Ignore warning from taking a log of any zero values
|
||||
s21 = 20 * np.log10(s21)
|
||||
s21[np.invert(np.isfinite(s21))] = 0
|
||||
antennaparams['s21'] = s21
|
||||
|
||||
return antennaparams
|
||||
|
||||
|
||||
def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref, Irefp, Vtotal, Vtotalp, Itotal, Itotalp, s11, zin, yin, s21=None):
|
||||
"""Plots antenna parameters - incident, reflected and total volatges and
|
||||
currents; s11, (s21) and input impedance.
|
||||
|
||||
Args:
|
||||
filename (string): Filename (including path) of output file.
|
||||
time (array): Simulation time.
|
||||
freq (array): Frequencies for FFTs.
|
||||
Vinc, Vincp, Iinc, Iincp (array): Time and frequency domain representations of incident voltage and current.
|
||||
Vref, Vrefp, Iref, Irefp (array): Time and frequency domain representations of reflected voltage and current.
|
||||
Vtotal, Vtotalp, Itotal, Itotalp (array): Time and frequency domain representations of total voltage and current.
|
||||
s11, s21 (array): s11 and, optionally, s21 parameters.
|
||||
zin, yin (array): Input impedance and input admittance parameters.
|
||||
|
||||
Returns:
|
||||
plt (object): matplotlib plot object.
|
||||
"""
|
||||
|
||||
# Set plotting range
|
||||
pltrangemin = 1
|
||||
# To a certain drop from maximum power
|
||||
pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1
|
||||
# To a maximum frequency
|
||||
pltrangemax = np.where(freqs > 3e9)[0][0]
|
||||
pltrange = np.s_[pltrangemin:pltrangemax]
|
||||
|
||||
# Print some useful values from s11, and input impedance
|
||||
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
|
||||
logger.info(f's11 minimum: {np.amin(s11[pltrange]):g} dB at {freqs[s11minfreq + pltrangemin]:g} Hz')
|
||||
logger.info(f'At {freqs[s11minfreq + pltrangemin]:g} Hz...')
|
||||
logger.info(f'Input impedance: {np.abs(zin[s11minfreq + pltrangemin]):.1f}{zin[s11minfreq + pltrangemin].imag:+.1f}j Ohms')
|
||||
# logger.info(f'Input admittance (mag): {np.abs(yin[s11minfreq + pltrangemin]):g} S')
|
||||
# logger.info(f'Input admittance (phase): {np.angle(yin[s11minfreq + pltrangemin], deg=True):.1f} deg')
|
||||
|
||||
# Figure 1
|
||||
# Plot incident voltage
|
||||
fig1, ax = plt.subplots(num='Transmitter transmission line parameters',
|
||||
figsize=(20, 12), facecolor='w', edgecolor='w')
|
||||
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
|
||||
ax = plt.subplot(gs1[0, 0])
|
||||
ax.plot(time, Vinc, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra of incident voltage
|
||||
ax = plt.subplot(gs1[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot incident current
|
||||
ax = plt.subplot(gs1[1, 0])
|
||||
ax.plot(time, Iinc, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra of incident current
|
||||
ax = plt.subplot(gs1[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot total voltage
|
||||
ax = plt.subplot(gs1[2, 0])
|
||||
ax.plot(time, Vtotal, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra of total voltage
|
||||
ax = plt.subplot(gs1[2, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot total current
|
||||
ax = plt.subplot(gs1[3, 0])
|
||||
ax.plot(time, Itotal, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra of total current
|
||||
ax = plt.subplot(gs1[3, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot reflected (reflected) voltage
|
||||
# ax = plt.subplot(gs1[4, 0])
|
||||
# ax.plot(time, Vref, 'r', lw=2, label='Vref')
|
||||
# ax.set_title('Reflected voltage')
|
||||
# ax.set_xlabel('Time [s]')
|
||||
# ax.set_ylabel('Voltage [V]')
|
||||
# ax.set_xlim([0, np.amax(time)])
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra of reflected voltage
|
||||
# ax = plt.subplot(gs1[4, 1])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange],
|
||||
# '-.', use_line_collection=True)
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'r')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
# ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
|
||||
# ax.set_title('Reflected voltage')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Power [dB]')
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot reflected (reflected) current
|
||||
# ax = plt.subplot(gs1[5, 0])
|
||||
# ax.plot(time, Iref, 'b', lw=2, label='Iref')
|
||||
# ax.set_title('Reflected current')
|
||||
# ax.set_xlabel('Time [s]')
|
||||
# ax.set_ylabel('Current [A]')
|
||||
# ax.set_xlim([0, np.amax(time)])
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra of reflected current
|
||||
# ax = plt.subplot(gs1[5, 1])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange],
|
||||
# '-.', use_line_collection=True)
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'b')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
# ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
|
||||
# ax.set_title('Reflected current')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Power [dB]')
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Figure 2
|
||||
# Plot frequency spectra of s11
|
||||
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12),
|
||||
facecolor='w', edgecolor='w')
|
||||
gs2 = gridspec.GridSpec(2, 2, hspace=0.3)
|
||||
ax = plt.subplot(gs2[0, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2)
|
||||
ax.set_title('s11')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
# ax.set_xlim([0, 5e9])
|
||||
# ax.set_ylim([-25, 0])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot frequency spectra of s21
|
||||
if s21 is not None:
|
||||
ax = plt.subplot(gs2[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
|
||||
ax.set_title('s21')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-25, 50])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot input resistance (real part of impedance)
|
||||
ax = plt.subplot(gs2[1, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real,
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2)
|
||||
ax.set_title('Input impedance (resistive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Resistance [Ohms]')
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim(bottom=0)
|
||||
# ax.set_ylim([0, 300])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot input reactance (imaginery part of impedance)
|
||||
ax = plt.subplot(gs2[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag,
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2)
|
||||
ax.set_title('Input impedance (reactive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Reactance [Ohms]')
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-300, 300])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot input admittance (magnitude)
|
||||
# ax = plt.subplot(gs2[2, 0])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]),
|
||||
# '-.', use_line_collection=True)
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'g')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
# ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
|
||||
# ax.set_title('Input admittance (magnitude)')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Admittance [Siemens]')
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([0, 0.035])
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Plot input admittance (phase)
|
||||
# ax = plt.subplot(gs2[2, 1])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True),
|
||||
# '-.', use_line_collection=True)
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'g')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
# ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
|
||||
# ax.set_title('Input admittance (phase)')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Phase [degrees]')
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-40, 100])
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
savename1 = filename.stem + '_tl_params'
|
||||
savename1 = filename.parent / savename1
|
||||
savename2 = filename.stem + '_ant_params'
|
||||
savename2 = filename.parent / savename2
|
||||
# fig1.savefig(savename1.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig2.savefig(savename2.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig1.savefig(savename1.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig2.savefig(savename2.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11, s21 parameters and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('--tltx-num', default=1, type=int, help='transmitter antenna - transmission line number')
|
||||
parser.add_argument('--tlrx-num', type=int, help='receiver antenna - transmission line number')
|
||||
parser.add_argument('--rx-num', type=int, help='receiver antenna - output number')
|
||||
parser.add_argument('--rx-component', type=str, help='receiver antenna - output electric field component', choices=['Ex', 'Ey', 'Ez'])
|
||||
args = parser.parse_args()
|
||||
|
||||
antennaparams = calculate_antenna_params(args.outputfile, args.tltx_num, args.tlrx_num, args.rx_num, args.rx_component)
|
||||
plthandle = mpl_plot(args.outputfile, **antennaparams)
|
||||
plthandle.show()
|
@@ -0,0 +1,184 @@
|
||||
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gprMax.utilities.utilities import fft_power, round_value
|
||||
from gprMax.waveforms import Waveform
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_timewindow(timewindow, dt):
|
||||
"""Checks and sets time window and number of iterations.
|
||||
|
||||
Args:
|
||||
timewindow (float): Time window.
|
||||
dt (float): Time discretisation.
|
||||
|
||||
Returns:
|
||||
timewindow (float): Time window.
|
||||
iterations (int): Number of interations.
|
||||
"""
|
||||
|
||||
# Time window could be a string, float or int, so convert to string then check
|
||||
timewindow = str(timewindow)
|
||||
|
||||
try:
|
||||
timewindow = int(timewindow)
|
||||
iterations = timewindow
|
||||
timewindow = (timewindow - 1) * dt
|
||||
|
||||
except:
|
||||
timewindow = float(timewindow)
|
||||
if timewindow > 0:
|
||||
iterations = round_value((timewindow / dt)) + 1
|
||||
else:
|
||||
logger.exception('Time window must have a value greater than zero')
|
||||
raise ValueError
|
||||
|
||||
return timewindow, iterations
|
||||
|
||||
|
||||
def mpl_plot(w, timewindow, dt, iterations, fft=False):
|
||||
"""Plots waveform and prints useful information about its properties.
|
||||
|
||||
Args:
|
||||
w (class): Waveform class instance.
|
||||
timewindow (float): Time window.
|
||||
dt (float): Time discretisation.
|
||||
iterations (int): Number of iterations.
|
||||
fft (boolean): Plot FFT switch.
|
||||
|
||||
Returns:
|
||||
plt (object): matplotlib plot object.
|
||||
"""
|
||||
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
waveform = np.zeros(len(time))
|
||||
timeiter = np.nditer(time, flags=['c_index'])
|
||||
|
||||
while not timeiter.finished:
|
||||
waveform[timeiter.index] = w.calculate_value(timeiter[0], dt)
|
||||
timeiter.iternext()
|
||||
|
||||
logger.info('Waveform characteristics...')
|
||||
logger.info(f'Type: {w.type}')
|
||||
logger.info(f'Maximum (absolute) amplitude: {np.max(np.abs(waveform)):g}')
|
||||
|
||||
if w.freq and not w.type == 'gaussian':
|
||||
logger.info(f'Centre frequency: {w.freq:g} Hz')
|
||||
|
||||
if (w.type == 'gaussian' or w.type == 'gaussiandot' or w.type == 'gaussiandotnorm'
|
||||
or w.type == 'gaussianprime' or w.type == 'gaussiandoubleprime'):
|
||||
delay = 1 / w.freq
|
||||
logger.info(f'Time to centre of pulse: {delay:g} s')
|
||||
elif w.type == 'gaussiandotdot' or w.type == 'gaussiandotdotnorm' or w.type == 'ricker':
|
||||
delay = np.sqrt(2) / w.freq
|
||||
logger.info(f'Time to centre of pulse: {delay:g} s')
|
||||
|
||||
logger.info(f'Time window: {timewindow:g} s ({iterations} iterations)')
|
||||
logger.info(f'Time step: {dt:g} s')
|
||||
|
||||
if fft:
|
||||
# FFT
|
||||
freqs, power = fft_power(waveform, dt)
|
||||
|
||||
# Set plotting range to 4 times frequency at max power of waveform or
|
||||
# 4 times the centre frequency
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
if freqs[freqmaxpower] > w.freq:
|
||||
pltrange = np.where(freqs > 4 * freqs[freqmaxpower])[0][0]
|
||||
else:
|
||||
pltrange = np.where(freqs > 4 * w.freq)[0][0]
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num=w.type,
|
||||
figsize=(20, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
|
||||
# Plot waveform
|
||||
ax1.plot(time, waveform, 'r', lw=2)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel('Amplitude')
|
||||
|
||||
# Plot frequency spectra
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||||
ax2.set_xlabel('Frequency [Hz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
|
||||
else:
|
||||
fig, ax1 = plt.subplots(num=w.type, figsize=(20, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
|
||||
# Plot waveform
|
||||
ax1.plot(time, waveform, 'r', lw=2)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel('Amplitude')
|
||||
|
||||
# Turn on grid
|
||||
[ax.grid(which='both', axis='both', linestyle='-.') for ax in fig.axes]
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
savefile = Path(__file__).parent / w.type
|
||||
# fig.savefig(savefile.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(savefile.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plot built-in waveforms that can be used for sources.', usage='cd gprMax; python -m tools.plot_source_wave type amp freq timewindow dt')
|
||||
parser.add_argument('type', help='type of waveform', choices=Waveform.types)
|
||||
parser.add_argument('amp', type=float, help='amplitude of waveform')
|
||||
parser.add_argument('freq', type=float, help='centre frequency of waveform')
|
||||
parser.add_argument('timewindow', help='time window to view waveform')
|
||||
parser.add_argument('dt', type=float, help='time step to view waveform')
|
||||
parser.add_argument('-fft', action='store_true', help='plot FFT of waveform', default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check waveform parameters
|
||||
if args.type.lower() not in Waveform.types:
|
||||
logger.exception(f"The waveform must have one of the following types {', '.join(Waveform.types)}")
|
||||
raise ValueError
|
||||
if args.freq <= 0:
|
||||
logger.exception('The waveform requires an excitation frequency value of greater than zero')
|
||||
raise ValueError
|
||||
|
||||
# Create waveform instance
|
||||
w = Waveform()
|
||||
w.type = args.type
|
||||
w.amp = args.amp
|
||||
w.freq = args.freq
|
||||
|
||||
timewindow, iterations = check_timewindow(args.timewindow, args.dt)
|
||||
plthandle = mpl_plot(w, timewindow, args.dt, iterations, args.fft)
|
||||
plthandle.show()
|
在新工单中引用
屏蔽一个用户