Re-structuring package layout

这个提交包含在:
Craig Warren
2022-11-09 09:29:23 +00:00
父节点 50d17f33ef
当前提交 16df30968e
共有 269 个文件被更改,包括 14 次插入261 次删除

查看文件

@@ -0,0 +1,129 @@
# Copyright (C) 2015-2022: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import itertools
import logging
from operator import add
from pathlib import Path
import h5py
import matplotlib.pyplot as plt
import numpy as np
logger = logging.getLogger(__name__)
# Create/setup plot figure
#colors = ['#E60D30', '#5CB7C6', '#A21797', '#A3B347'] # Plot colours from http://tools.medialab.sciences-po.fr/iwanthue/index.php
#colorIDs = ["#62a85b", "#9967c7", "#b3943f", "#6095cd", "#cb5c42", "#c95889"]
colorIDs = ["#79c72e", "#5774ff", "#ff7c2c", "#4b4e80", "#d7004e", "#007545", "#ff83ec"]
#colorIDs = ["#ba0044", "#b2d334", "#470055", "#185300", "#ff96b1", "#3e2700", "#0162a9", "#fdb786"]
colors = itertools.cycle(colorIDs)
# for i in range(2):
# next(colors)
lines = itertools.cycle(('--', ':', '-.', '-'))
markers = ['o', 'd', '^', 's', '*']
parts = Path(__file__).parts
path = 'rxs/rx1/'
basename = 'pml_3D_pec_plate'
PMLIDs = ['CFS-PML', 'HORIPML-1', 'HORIPML-2', 'MRIPML-1', 'MRIPML-2']
maxerrors = []
testmodels = ['pml_3D_pec_plate_' + s for s in PMLIDs]
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Error [dB]'), figsize=(20, 10), facecolor='w', edgecolor='w')
for x, model in enumerate(testmodels):
# Open output file and read iterations
fileref = h5py.File(Path(*parts[:-1], basename, basename + '_ref.h5'), 'r')
filetest = h5py.File(Path(*parts[:-1], basename, basename + str(x + 1) + '.h5'), 'r')
# Get available field output component names
outputsref = list(fileref[path].keys())
outputstest = list(filetest[path].keys())
if outputsref != outputstest:
logger.exception('Field output components do not match reference solution')
raise ValueError
# Check that type of float used to store fields matches
if filetest[path + outputstest[0]].dtype != fileref[path + outputsref[0]].dtype:
logger.warning(f'Type of floating point number in test model ({filetest[path + outputstest[0]].dtype}) '
f'does not match type in reference solution ({fileref[path + outputsref[0]].dtype})\n')
floattyperef = fileref[path + outputsref[0]].dtype
floattypetest = filetest[path + outputstest[0]].dtype
# logger.info(f'Data type: {floattypetest}')
# Arrays for storing time
# timeref = np.zeros((fileref.attrs['Iterations']), dtype=floattyperef)
# timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1) * fileref.attrs['dt'], num=fileref.attrs['Iterations']) / 1e-9
# timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
# timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1) * filetest.attrs['dt'], num=filetest.attrs['Iterations']) / 1e-9
timeref = np.zeros((fileref.attrs['Iterations']), dtype=floattyperef)
timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1), num=fileref.attrs['Iterations'])
timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1), num=filetest.attrs['Iterations'])
# Arrays for storing field data
dataref = np.zeros((fileref.attrs['Iterations'], len(outputsref)), dtype=floattyperef)
datatest = np.zeros((filetest.attrs['Iterations'], len(outputstest)), dtype=floattypetest)
for ID, name in enumerate(outputsref):
dataref[:, ID] = fileref[path + str(name)][:]
datatest[:, ID] = filetest[path + str(name)][:]
if np.any(np.isnan(datatest[:, ID])):
logger.exception('Test data contains NaNs')
raise ValueError
fileref.close()
filetest.close()
# Diffs
datadiffs = np.zeros(datatest.shape, dtype=np.float64)
for i in range(len(outputstest)):
max = np.amax(np.abs(dataref[:, i]))
datadiffs[:, i] = np.divide(np.abs(datatest[:, i] - dataref[:, i]), max, out=np.zeros_like(dataref[:, i]), where=max != 0) # Replace any division by zero with zero
# Calculate power (ignore warning from taking a log of any zero values)
with np.errstate(divide='ignore'):
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i])
# Replace any NaNs or Infs from zero division
datadiffs[:, i][np.invert(np.isfinite(datadiffs[:, i]))] = 0
# Print maximum error value
start = 210
maxerrors.append(f': {np.amax(datadiffs[start::, 1]):.1f} [dB]')
logger.info(f'{model}: Max. error {maxerrors[x]}')
# Plot diffs (select column to choose field component, 0-Ex, 1-Ey etc..)
ax.plot(timeref[start::], datadiffs[start::, 1], color=next(colors), lw=2, ls=next(lines), label=model)
ax.set_xticks(np.arange(0, 2200, step=100))
ax.set_xlim([0, 2100])
ax.set_yticks(np.arange(-160, 0, step=20))
ax.set_ylim([-160, -20])
ax.set_axisbelow(True)
ax.grid(color=(0.75,0.75,0.75), linestyle='dashed')
mylegend = list(map(add, PMLIDs, maxerrors))
legend = ax.legend(mylegend, loc=1, fontsize=14)
frame = legend.get_frame()
frame.set_edgecolor('white')
frame.set_alpha(0)
plt.show()
# Save a PDF/PNG of the figure
#fig.savefig(basepath + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
#fig.savefig(savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)

查看文件

@@ -0,0 +1,143 @@
from pathlib import Path
import gprMax
import numpy as np
# File path for output
fn = Path(__file__)
parts = fn.parts
# Discretisation
dl = 0.001
# Domain
x = 0.051
y = 0.126
z = 0.026
domain = gprMax.Domain(p1=(x, y, z))
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
time_window = gprMax.TimeWindow(iterations=2100)
tssf = gprMax.TimeStepStabilityFactor(f=0.99)
waveform = gprMax.Waveform(wave_type='gaussiandotnorm', amp=1, freq=9.42e9, id='mypulse')
hertzian_dipole = gprMax.HertzianDipole(polarisation='z',
p1=(0.013, 0.013, 0.014),
waveform_id='mypulse')
rx = gprMax.Rx(p1=(0.038, 0.114, 0.013))
plate = gprMax.Plate(p1=(0.013, 0.013, 0.013),
p2=(0.038, 0.113, 0.013), material_id='pec')
gv1 = gprMax.GeometryView(p1=(0, 0, 0), p2=(x, y, z), dl=(dl, dl, dl),
filename=Path(*parts[:-1], parts[-1] + '_n'), output_type='n')
gv2 = gprMax.GeometryView(p1=(0, 0, 0), p2=(x, y, z), dl=(dl, dl, dl),
filename=Path(*parts[:-1], parts[-1] + '_f'), output_type='f')
pmls = {'CFS-PML': {'pml_type': gprMax.PMLFormulation(pml='HORIPML'),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0.05, alphamax=0.05,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)))]},
'HORIPML-1': {'pml_type': gprMax.PMLFormulation(pml='HORIPML'),
# Parameters from http://dx.doi.org/10.1109/TAP.2011.2180344
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0, alphamax=0,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=12,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.7 * ((4 + 1) / (150 * np.pi * dl)))]},
'HORIPML-2': {'pml_type': gprMax.PMLFormulation(pml='HORIPML'),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0, alphamax=0,
kappascalingprofile='constant',
kappascalingdirection='forward',
kappamin=1, kappamax=1,
sigmascalingprofile='sextic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.275 / (150 * np.pi * dl)),
gprMax.PMLCFS(alphascalingprofile='sextic',
alphascalingdirection='forward',
alphamin=0.07, alphamax=0.07 + (0.275 / (150 * np.pi * dl)),
kappascalingprofile='cubic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quadratic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=2.75 / (150 * np.pi * dl))]},
'MRIPML-1': {'pml_type': gprMax.PMLFormulation(pml='MRIPML'),
# Parameters from Antonis' MATLAB script (M3Dparams.m)
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0.05, alphamax=0.05,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)))]},
'MRIPML-2': {'pml_type': gprMax.PMLFormulation(pml='MRIPML'),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='quadratic',
alphascalingdirection='reverse',
alphamin=0, alphamax=0.15,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=12,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.65 * ((4 + 1) / (150 * np.pi * dl))),
gprMax.PMLCFS(alphascalingprofile='linear',
alphascalingdirection='reverse',
alphamin=0.07, alphamax=0.8,
kappascalingprofile='constant',
kappascalingdirection='forward',
kappamin=0, kappamax=0,
sigmascalingprofile='quadratic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.65 * ((2 + 1) / (150 * np.pi * dl)))]}
}
scenes = []
for k, v in pmls.items():
scene = gprMax.Scene()
title = gprMax.Title(name=fn.with_suffix('').name + '_' + k)
scene.add(title)
scene.add(domain)
scene.add(dxdydz)
scene.add(time_window)
scene.add(tssf)
scene.add(waveform)
scene.add(hertzian_dipole)
scene.add(rx)
# scene.add(gv1)
# scene.add(gv2)
pml_cells = gprMax.PMLCells(thickness=10)
scene.add(pml_cells)
scene.add(v['pml_type'])
for pml_cfs in v['pml_cfs']:
scene.add(pml_cfs)
scenes.append(scene)
# Run model
gprMax.run(scenes=scenes, n=len(pmls), geometry_only=False, outputfile=fn)

二进制文件未显示。

二进制文件未显示。

二进制文件未显示。

二进制文件未显示。

二进制文件未显示。

二进制文件未显示。

查看文件

@@ -0,0 +1,34 @@
#title: Standard PML of response from an elongated thin PEC plate
#domain: 0.201 0.276 0.176
#dx_dy_dz: 0.001 0.001 0.001
#time_window: 2100
#time_step_stability_factor: 0.99
################################################
## PML parameters
## CFS (alpha, kappa, sigma)
## sigma_max = (0.8 * (m + 1)) / (z0 * d * np.sqrt(er * mr))
## z0 = 376.73, d = 0.001
################################################
#pml_cells: 10
#############
## CFS PML ##
#############
#python:
import numpy as np
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
smax = 1.1 * ((4 + 1) / (150 * np.pi * 0.001))
print('#pml_cfs: constant forward 0.05 0.05 quartic forward 1 8 quartic forward 0 {}'.format(smax))
#end_python:
#waveform: gaussiandotnorm 1 9.42e9 mypulse
#hertzian_dipole: z 0.088 0.088 0.089 mypulse
#rx: 0.113 0.189 0.088
#plate: 0.088 0.088 0.088 0.113 0.188 0.088 pec
geometry_view: 0 0 0 0.201 0.276 0.176 0.001 0.001 0.001 pml_3D_pec_plate_ref_f f
geometry_view: 0 0 0 0.201 0.276 0.176 0.001 0.001 0.001 pml_3D_pec_plate_ref_n n

查看文件

@@ -0,0 +1,70 @@
from pathlib import Path
import gprMax
import numpy as np
# File path for output
fn = Path(__file__)
parts = fn.parts
# Discretisation
dl = 0.001
# Domain
x = 0.201
y = 0.276
z = 0.176
domain = gprMax.Domain(p1=(x, y, z))
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
time_window = gprMax.TimeWindow(iterations=2100)
tssf = gprMax.TimeStepStabilityFactor(f=0.99)
waveform = gprMax.Waveform(wave_type='gaussiandotnorm', amp=1, freq=9.42e9, id='mypulse')
hertzian_dipole = gprMax.HertzianDipole(polarisation='z',
p1=(0.088, 0.088, 0.089),
waveform_id='mypulse')
rx = gprMax.Rx(p1=(0.113, 0.189, 0.088))
plate = gprMax.Plate(p1=(0.088, 0.088, 0.088),
p2=(0.113, 0.188, 0.088), material_id='pec')
gv1 = gprMax.GeometryView(p1=(0, 0, 0), p2=(x, y, z), dl=(dl, dl, dl),
filename=Path(*parts[:-1], parts[-1] + '_n'), output_type='n')
gv2 = gprMax.GeometryView(p1=(0, 0, 0), p2=(x, y, z), dl=(dl, dl, dl),
filename=Path(*parts[:-1], parts[-1] + '_f'), output_type='f')
pml_type = gprMax.PMLFormulation(pml='HORIPML')
pml_cells = gprMax.PMLCells(thickness=10)
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0.05, alphamax=0.05,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)))
scene = gprMax.Scene()
title = gprMax.Title(name=fn.with_suffix('').name + '_ref')
scene.add(title)
scene.add(domain)
scene.add(dxdydz)
scene.add(time_window)
scene.add(tssf)
scene.add(waveform)
scene.add(hertzian_dipole)
scene.add(rx)
# scene.add(gv1)
# scene.add(gv2)
scene.add(pml_cells)
scene.add(pml_type)
scene.add(pml_cfs)
# Run model
gprMax.run(scenes=[scene], geometry_only=False, outputfile=fn)

113
testing/models_pmls/pml_basic.py 可执行文件
查看文件

@@ -0,0 +1,113 @@
from pathlib import Path
import gprMax
# File path for output
fn = Path(__file__)
# Discretisation
dl = 0.001
# Domain
x = 0.100
y = 0.100
z = 0.100
domain = gprMax.Domain(p1=(x, y, z))
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
time_window = gprMax.TimeWindow(time=3e-9)
waveform = gprMax.Waveform(wave_type='gaussian', amp=1, freq=1e9, id='mypulse')
hertzian_dipole = gprMax.HertzianDipole(polarisation='z',
p1=(0.050, 0.050, 0.050),
waveform_id='mypulse')
rx = gprMax.Rx(p1=(0.070, 0.070, 0.070))
# PML cases
thick = 10 # thickness
cases = {'off': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax':0},
'x0': {'x0': thick, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax':0},
'y0': {'x0': 0, 'y0': thick, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax':0},
'z0': {'x0': 0, 'y0': 0, 'z0': thick, 'xmax': 0, 'ymax': 0, 'zmax':0},
'xmax': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': thick, 'ymax': 0, 'zmax':0},
'ymax': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': thick, 'zmax':0},
'zmax': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax': thick}}
# PML formulation
pml_type = gprMax.PMLFormulation(pml='HORIPML')
## Built-in 1st order PML
pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0, alphamax=0,
kappascalingprofile='constant',
kappascalingdirection='forward',
kappamin=1, kappamax=1,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0, sigmamax=None)
## PMLs from http://dx.doi.org/10.1109/TAP.2011.2180344
## Standard PML
# pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0, alphamax=0,
# kappascalingprofile='quartic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=11,
# sigmascalingprofile='quartic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=7.427)
## CFS PML
# pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0.05, alphamax=0.05,
# kappascalingprofile='quartic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=7,
# sigmascalingprofile='quartic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=11.671)
## 2nd order RIPML
# pml_cfs1 = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0, alphamax=0,
# kappascalingprofile='constant',
# kappascalingdirection='forward',
# kappamin=1, kappamax=1,
# sigmascalingprofile='sextic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=0.5836)
# pml_cfs2 = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0.05, alphamax=0.05,
# kappascalingprofile='cubic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=8,
# sigmascalingprofile='quadratic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=5.8357)
scenes = []
for k, v in cases.items():
scene = gprMax.Scene()
title = gprMax.Title(name=fn.with_suffix('').name + '_' + k)
scene.add(title)
scene.add(domain)
scene.add(dxdydz)
scene.add(time_window)
scene.add(waveform)
scene.add(hertzian_dipole)
scene.add(rx)
pml_cells = gprMax.PMLCells(**v)
scene.add(pml_cells)
scene.add(pml_type)
scene.add(pml_cfs)
scenes.append(scene)
# Run model
gprMax.run(scenes=scenes, n=len(cases), geometry_only=False, outputfile=fn)