你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
Consolidated min/max functions into a single function. Added more robust checking of output names when reading output files.
这个提交包含在:
185
user_libs/optimisation_taguchi/fitness_functions.py
普通文件 -> 可执行文件
185
user_libs/optimisation_taguchi/fitness_functions.py
普通文件 -> 可执行文件
@@ -18,88 +18,56 @@ np.seterr(divide='ignore')
|
||||
from gprMax.exceptions import GeneralError
|
||||
|
||||
"""This module contains fitness metric functions that can be used with the Taguchi optimisation method.
|
||||
|
||||
All fitness functions must take two arguments and return a single fitness value.
|
||||
The first argument should be the name of the output file
|
||||
|
||||
All fitness functions must take two arguments and return a single fitness value.
|
||||
The first argument should be the name of the output file
|
||||
The second argument is a dictionary which can contain any number of additional arguments, e.g. names (IDs) of outputs (rxs) from input file
|
||||
"""
|
||||
|
||||
def minvalue(filename, args):
|
||||
def min_max_value(filename, args):
|
||||
"""Minimum value from a response.
|
||||
|
||||
|
||||
Args:
|
||||
filename (str): Name of output file
|
||||
args (dict): 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
args (dict): 'type' key with string 'min', 'max' or 'absmax'; 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
Returns:
|
||||
minvalue (float): Magnitude of minimum value from specific outputs
|
||||
value (float): Minimum, maximum, or absolute maximum value from specific outputs
|
||||
"""
|
||||
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
|
||||
value = 0
|
||||
outputsused = False
|
||||
for rx in range(1, nrx + 1):
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
minvalue = np.amin(output[outputname])
|
||||
if args['type'] == 'min':
|
||||
value += np.abs(np.amin(output[outputname]))
|
||||
elif args['type'] == 'max':
|
||||
value += np.amax(output[outputname])
|
||||
elif args['type'] == 'absmax':
|
||||
value += np.amax(np.abs(output[outputname]))
|
||||
else:
|
||||
raise GeneralError('type must be either min, max, or absmax')
|
||||
outputsused = True
|
||||
|
||||
return np.abs(minvalue)
|
||||
# Check in case no outputs where found
|
||||
if not outputsused:
|
||||
raise GeneralError('No outputs matching {} were found'.format(args['outputs']))
|
||||
|
||||
|
||||
def maxvalue(filename, args):
|
||||
"""Maximum value from a response.
|
||||
|
||||
Args:
|
||||
filename (str): Name of output file
|
||||
args (dict): 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
Returns:
|
||||
maxvalue (float): Maximum value from specific outputs
|
||||
"""
|
||||
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
maxvalue = np.amax(output[outputname])
|
||||
|
||||
return maxvalue
|
||||
|
||||
|
||||
def maxabsvalue(filename, args):
|
||||
"""Maximum absolute value from a response.
|
||||
|
||||
Args:
|
||||
filename (str): Name of output file
|
||||
args (dict): 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
Returns:
|
||||
maxabsvalue (float): Maximum absolute value from specific outputs
|
||||
"""
|
||||
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
maxabsvalue = np.amax(np.abs(output[outputname]))
|
||||
|
||||
return maxabsvalue
|
||||
return value
|
||||
|
||||
|
||||
def xcorr(filename, args):
|
||||
"""Maximum value of a cross-correlation between a response and a reference response.
|
||||
|
||||
|
||||
Args:
|
||||
filename (str): Name of output file
|
||||
args (dict): 'refresp' key with path & filename of reference response (time, amp) stored in a text file; 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
|
||||
Returns:
|
||||
xcorrmax (float): Maximum value from specific outputs
|
||||
"""
|
||||
@@ -107,8 +75,8 @@ def xcorr(filename, args):
|
||||
# Load (from text file) the reference response. See if file exists at specified path and if not try input file directory
|
||||
refrespfile = os.path.abspath(args['refresp'])
|
||||
if not os.path.isfile(refrespfile):
|
||||
raise GeneralError('Cannot load reference response at {}'.format(refrespfile))
|
||||
with open(refresp, 'r') as f:
|
||||
raise GeneralError('Cannot load reference response from {}'.format(refrespfile))
|
||||
with open(refrespfile, 'r') as f:
|
||||
refdata = np.loadtxt(f)
|
||||
reftime = refdata[:,0] * 1e-9
|
||||
refresp = refdata[:,1]
|
||||
@@ -117,19 +85,25 @@ def xcorr(filename, args):
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
modeltime = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt'])
|
||||
|
||||
|
||||
outputsused = False
|
||||
for rx in range(1, nrx + 1):
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
modelresp = output[outputname]
|
||||
# Convert field value (V/m) to voltage
|
||||
# Convert electric field value (V/m) to voltage (V)
|
||||
if outputname == 'Ex':
|
||||
modelresp *= -f.attrs['dx, dy, dz'][0]
|
||||
elif outputname == 'Ey':
|
||||
modelresp *= -f.attrs['dx, dy, dz'][1]
|
||||
elif outputname == 'Ez':
|
||||
modelresp *= -f.attrs['dx, dy, dz'][2]
|
||||
outputsused = True
|
||||
|
||||
# Check in case no outputs where found
|
||||
if not outputsused:
|
||||
raise GeneralError('No outputs matching {} were found'.format(args['outputs']))
|
||||
|
||||
# Normalise reference respose and response from output file
|
||||
# refresp /= np.amax(np.abs(refresp))
|
||||
@@ -162,7 +136,7 @@ def xcorr(filename, args):
|
||||
|
||||
# Calculate cross-correlation
|
||||
xcorr = signal.correlate(refresp, modelresp)
|
||||
|
||||
|
||||
# Set any NaNs to zero
|
||||
xcorr = np.nan_to_num(xcorr)
|
||||
|
||||
@@ -179,11 +153,11 @@ def xcorr(filename, args):
|
||||
|
||||
def min_sum_diffs(filename, args):
|
||||
"""Sum of the differences (in dB) between responses and a reference response.
|
||||
|
||||
|
||||
Args:
|
||||
filename (str): Name of output file
|
||||
args (dict): 'refresp' key with path & filename of reference response; 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
|
||||
Returns:
|
||||
diffdB (float): Sum of the differences (in dB) between responses and a reference response
|
||||
"""
|
||||
@@ -200,7 +174,7 @@ def min_sum_diffs(filename, args):
|
||||
# Load (from gprMax output file) the response
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
|
||||
|
||||
diffdB = 0
|
||||
outputs = 0
|
||||
for rx in range(1, nrx + 1):
|
||||
@@ -214,20 +188,24 @@ def min_sum_diffs(filename, args):
|
||||
diffdB += tmp
|
||||
outputs += 1
|
||||
|
||||
# Check in case no outputs where found
|
||||
if outputs = 0:
|
||||
raise GeneralError('No outputs matching {} were found'.format(args['outputs']))
|
||||
|
||||
return diffdB / outputs
|
||||
|
||||
|
||||
def compactness(filename, args):
|
||||
"""A measure of the compactness of a time domain signal.
|
||||
|
||||
|
||||
Args:
|
||||
filename (str): Name of output file
|
||||
args (dict): 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
|
||||
Returns:
|
||||
compactness (float): Compactness value of signal
|
||||
"""
|
||||
|
||||
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
dt = f.attrs['dt']
|
||||
@@ -235,6 +213,7 @@ def compactness(filename, args):
|
||||
time = np.linspace(0, 1, iterations)
|
||||
time *= (iterations * dt)
|
||||
|
||||
outputsused = False
|
||||
for rx in range(1, nrx + 1):
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
@@ -249,14 +228,14 @@ def compactness(filename, args):
|
||||
maxtab, mintab = peakdet(outputdata, delta)
|
||||
peaks = maxtab + mintab
|
||||
peaks.sort()
|
||||
|
||||
|
||||
# Remove any peaks smaller than a threshold
|
||||
thresholdpeak = 1e-3
|
||||
peaks = [peak for peak in peaks if np.abs(outputdata[peak]) > thresholdpeak]
|
||||
|
||||
|
||||
# Amplitude ratio of the 1st to 3rd peak - hopefully be a measure of a compact envelope
|
||||
compactness = np.abs(outputdata[peaks[0]]) / np.abs(outputdata[peaks[2]])
|
||||
|
||||
|
||||
# # Percentage of maximum value to measure compactness of signal
|
||||
# durationthreshold = 2
|
||||
# # Check if there is a peak/trough smaller than threshold
|
||||
@@ -267,8 +246,11 @@ def compactness(filename, args):
|
||||
# time2threshold = time[peaks[durationthresholdexist[0]]]
|
||||
# compactness = time2threshold - time[min(peaks)]
|
||||
|
||||
return compactness
|
||||
# Check in case no outputs where found
|
||||
if not outputsused:
|
||||
raise GeneralError('No outputs matching {} were found'.format(args['outputs']))
|
||||
|
||||
return compactness
|
||||
|
||||
|
||||
######################################
|
||||
@@ -277,78 +259,78 @@ def compactness(filename, args):
|
||||
|
||||
def spectral_centroid(x, samplerate):
|
||||
"""Calculate the spectral centroid of a signal.
|
||||
|
||||
|
||||
Args:
|
||||
x (float): 1D array containing time domain signal
|
||||
samplerate (float): Sample rate of signal (Hz)
|
||||
|
||||
|
||||
Returns:
|
||||
centroid (float): Weighted mean of the frequencies present in the signal
|
||||
"""
|
||||
|
||||
|
||||
magnitudes = np.abs(np.fft.rfft(x))
|
||||
length = len(x)
|
||||
|
||||
# Positive frequencies
|
||||
freqs = np.abs(np.fft.fftfreq(length, 1.0/samplerate)[:length//2+1])
|
||||
|
||||
centroid = np.sum(magnitudes*freqs) / np.sum(magnitudes)
|
||||
|
||||
return centroid
|
||||
|
||||
|
||||
def zero_crossings(x):
|
||||
"""Find location of zero crossings in 1D data array.
|
||||
|
||||
|
||||
Args:
|
||||
x (float): 1D array
|
||||
|
||||
|
||||
Returns:
|
||||
indexzeros (int): Array of indices of zero crossing locations
|
||||
"""
|
||||
|
||||
|
||||
pos = x > 0
|
||||
npos = ~pos
|
||||
indexzeros = ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
||||
|
||||
return indexzeros
|
||||
|
||||
|
||||
|
||||
|
||||
def peakdet(v, delta, x = None):
|
||||
"""Detect peaks and troughs in a vector (adapted from MATLAB script at http://billauer.co.il/peakdet.html).
|
||||
"""Detect peaks and troughs in a vector (adapted from MATLAB script at http://billauer.co.il/peakdet.html).
|
||||
A point is considered a maximum peak if it has the maximal value, and was preceded (to the left) by a value lower by delta.
|
||||
|
||||
|
||||
Eli Billauer, 3.4.05 (Explicitly not copyrighted).
|
||||
This function is released to the public domain; Any use is allowed.
|
||||
|
||||
|
||||
Args:
|
||||
v (float): 1D array
|
||||
delta (float): threshold for determining peaks/troughs
|
||||
|
||||
|
||||
Returns:
|
||||
maxtab, mintab (list): Indices of peak/trough locations
|
||||
"""
|
||||
|
||||
|
||||
maxtab = []
|
||||
mintab = []
|
||||
|
||||
|
||||
if x is None:
|
||||
x = np.arange(len(v))
|
||||
|
||||
|
||||
v = np.asarray(v)
|
||||
|
||||
|
||||
if len(v) != len(x):
|
||||
raise GeneralError('Input vectors v and x must have same length')
|
||||
|
||||
if not np.isscalar(delta):
|
||||
raise GeneralError('Input argument delta must be a scalar')
|
||||
|
||||
|
||||
if delta <= 0:
|
||||
raise GeneralError('Input argument delta must be positive')
|
||||
|
||||
|
||||
mn, mx = np.Inf, -np.Inf
|
||||
mnpos, mxpos = np.NaN, np.NaN
|
||||
|
||||
|
||||
lookformax = True
|
||||
|
||||
|
||||
for i in np.arange(len(v)):
|
||||
this = v[i]
|
||||
if this > mx:
|
||||
@@ -357,7 +339,7 @@ def peakdet(v, delta, x = None):
|
||||
if this < mn:
|
||||
mn = this
|
||||
mnpos = x[i]
|
||||
|
||||
|
||||
if lookformax:
|
||||
if this < mx-delta:
|
||||
if int(mxpos) != 0:
|
||||
@@ -374,16 +356,3 @@ def peakdet(v, delta, x = None):
|
||||
lookformax = True
|
||||
|
||||
return maxtab, mintab
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户