Added ability to write snapshots with GPU solver. Implmented speedup of snapshot writing for CPU solver.

这个提交包含在:
Craig Warren
2018-07-09 11:15:08 +01:00
父节点 ae243b1d03
当前提交 0ea15aaf1a
共有 4 个文件被更改,包括 433 次插入118 次删除

查看文件

@@ -23,15 +23,23 @@ from struct import pack
import numpy as np
from gprMax.constants import floattype
from gprMax.grid import Ix
from gprMax.grid import Iy
from gprMax.grid import Iz
from gprMax.snapshots_ext import calculate_snapshot_fields
from gprMax.utilities import round_value
class Snapshot(object):
"""Snapshots of the electric and magnetic field values."""
# Dimensions of largest requested snapshot
nx_max = 0
ny_max = 0
nz_max = 0
# GPU - threads per block
tpb = (1, 1, 1)
# GPU - blocks per grid - set according to largest requested snapshot
bpg = None
# Set string for byte order
if sys.byteorder == 'little':
byteorder = 'LittleEndian'
@@ -49,8 +57,8 @@ class Snapshot(object):
def __init__(self, xs=None, ys=None, zs=None, xf=None, yf=None, zf=None, dx=None, dy=None, dz=None, time=None, filename=None):
"""
Args:
xs, xf, ys, yf, zs, zf (float): Extent of the volume.
dx, dy, dz (float): Spatial discretisation.
xs, xf, ys, yf, zs, zf (int): Extent of the volume in cells.
dx, dy, dz (int): Spatial discretisation in cells.
time (int): Iteration number to take the snapshot on.
filename (str): Filename to save to.
"""
@@ -64,92 +72,156 @@ class Snapshot(object):
self.dx = dx
self.dy = dy
self.dz = dz
self.nx = round_value((self.xf - self.xs) / self.dx)
self.ny = round_value((self.yf - self.ys) / self.dy)
self.nz = round_value((self.zf - self.zs) / self.dz)
self.sx = slice(self.xs, self.xf + self.dx, self.dx)
self.sy = slice(self.ys, self.yf + self.dy, self.dy)
self.sz = slice(self.zs, self.zf + self.dz, self.dz)
self.ncells = self.nx * self.ny * self.nz
self.datasizefield = 3 * np.dtype(floattype).itemsize * self.ncells
self.vtkdatawritesize = 2 * self.datasizefield + 2 * np.dtype(np.uint32).itemsize
self.time = time
self.basefilename = filename
def prepare_vtk_imagedata(self, appendmodelnumber, G):
"""Prepares a VTK ImageData (.vti) file for a snapshot.
def store(self, G):
"""Store (in memory) electric and magnetic field values for snapshot.
Args:
appendmodelnumber (str): Text to append to filename.
G (class): Grid class instance - holds essential parameters describing the model.
"""
# No Python 3 support for VTK at time of writing (03/2015)
self.vtk_nx = self.xf - self.xs
self.vtk_ny = self.yf - self.ys
self.vtk_nz = self.zf - self.zs
# Memory views of field arrays to dimensions required for the snapshot
Exslice = np.ascontiguousarray(G.Ex[self.sx, self.sy, self.sz])
Eyslice = np.ascontiguousarray(G.Ey[self.sx, self.sy, self.sz])
Ezslice = np.ascontiguousarray(G.Ez[self.sx, self.sy, self.sz])
Hxslice = np.ascontiguousarray(G.Hx[self.sx, self.sy, self.sz])
Hyslice = np.ascontiguousarray(G.Hy[self.sx, self.sy, self.sz])
Hzslice = np.ascontiguousarray(G.Hz[self.sx, self.sy, self.sz])
# Create directory and construct filename from user-supplied name and model run number
snapshotdir = os.path.join(G.inputdirectory, os.path.splitext(G.inputfilename)[0] + '_snaps' + appendmodelnumber)
if not os.path.exists(snapshotdir):
os.mkdir(snapshotdir)
self.filename = os.path.abspath(os.path.join(snapshotdir, self.basefilename + '.vti'))
# Create arrays to hold the field data for snapshot
Exsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Eysnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Ezsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Hxsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Hysnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Hzsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
# Calculate number of cells according to requested sampling
self.vtk_xscells = round_value(self.xs / self.dx)
self.vtk_xfcells = round_value(self.xf / self.dx)
self.vtk_yscells = round_value(self.ys / self.dy)
self.vtk_yfcells = round_value(self.yf / self.dy)
self.vtk_zscells = round_value(self.zs / self.dz)
self.vtk_zfcells = round_value(self.zf / self.dz)
vtk_hfield_offset = 3 * np.dtype(floattype).itemsize * (self.vtk_xfcells - self.vtk_xscells) * (self.vtk_yfcells - self.vtk_yscells) * (self.vtk_zfcells - self.vtk_zscells) + np.dtype(np.uint32).itemsize
vtk_current_offset = 2 * vtk_hfield_offset
# Calculate field values at points (comes from averaging field components in cells)
calculate_snapshot_fields(
self.nx,
self.ny,
self.nz,
Exslice,
Eyslice,
Ezslice,
Hxslice,
Hyslice,
Hzslice,
Exsnap,
Eysnap,
Ezsnap,
Hxsnap,
Hysnap,
Hzsnap)
# Convert to format for Paraview
self.electric = np.stack((Exsnap, Eysnap, Ezsnap)).reshape(-1, order='F')
self.magnetic = np.stack((Hxsnap, Hysnap, Hzsnap)).reshape(-1, order='F')
def write_vtk_imagedata(self, pbar, G):
"""Write snapshot data to a VTK ImageData (.vti) file.
N.B. No Python 3 support for VTK at time of writing (03/2015)
Args:
pbar (class): Progress bar class instance.
G (class): Grid class instance - holds essential parameters describing the model.
"""
hfield_offset = 3 * np.dtype(floattype).itemsize * self.ncells + np.dtype(np.uint32).itemsize
self.filehandle = open(self.filename, 'wb')
self.filehandle.write('<?xml version="1.0"?>\n'.encode('utf-8'))
self.filehandle.write('<VTKFile type="ImageData" version="1.0" byte_order="{}">\n'.format(Snapshot.byteorder).encode('utf-8'))
self.filehandle.write('<ImageData WholeExtent="{} {} {} {} {} {}" Origin="0 0 0" Spacing="{:.3} {:.3} {:.3}">\n'.format(self.vtk_xscells, self.vtk_xfcells, self.vtk_yscells, self.vtk_yfcells, self.vtk_zscells, self.vtk_zfcells, self.dx * G.dx, self.dy * G.dy, self.dz * G.dz).encode('utf-8'))
self.filehandle.write('<Piece Extent="{} {} {} {} {} {}">\n'.format(self.vtk_xscells, self.vtk_xfcells, self.vtk_yscells, self.vtk_yfcells, self.vtk_zscells, self.vtk_zfcells).encode('utf-8'))
self.filehandle.write('<CellData Vectors="E-field H-field Current">\n'.encode('utf-8'))
self.filehandle.write('<ImageData WholeExtent="{} {} {} {} {} {}" Origin="0 0 0" Spacing="{:.3} {:.3} {:.3}">\n'.format(self.xs, round_value(self.xf / self.dx), self.ys, round_value(self.yf / self.dy), self.zs, round_value(self.zf / self.dz), self.dx * G.dx, self.dy * G.dy, self.dz * G.dz).encode('utf-8'))
self.filehandle.write('<Piece Extent="{} {} {} {} {} {}">\n'.format(self.xs, round_value(self.xf / self.dx), self.ys, round_value(self.yf / self.dy), self.zs, round_value(self.zf / self.dz)).encode('utf-8'))
self.filehandle.write('<CellData Vectors="E-field H-field">\n'.encode('utf-8'))
self.filehandle.write('<DataArray type="{}" Name="E-field" NumberOfComponents="3" format="appended" offset="0" />\n'.format(Snapshot.floatname).encode('utf-8'))
self.filehandle.write('<DataArray type="{}" Name="H-field" NumberOfComponents="3" format="appended" offset="{}" />\n'.format(Snapshot.floatname, vtk_hfield_offset).encode('utf-8'))
self.filehandle.write('<DataArray type="{}" Name="Current" NumberOfComponents="3" format="appended" offset="{}" />\n'.format(Snapshot.floatname, vtk_current_offset).encode('utf-8'))
self.filehandle.write('<DataArray type="{}" Name="H-field" NumberOfComponents="3" format="appended" offset="{}" />\n'.format(Snapshot.floatname, hfield_offset).encode('utf-8'))
self.filehandle.write('</CellData>\n</Piece>\n</ImageData>\n<AppendedData encoding="raw">\n_'.encode('utf-8'))
self.filehandle.close()
def write_vtk_imagedata(self, Ex, Ey, Ez, Hx, Hy, Hz, G, pbar):
"""Writes electric and magnetic field values to VTK ImageData (.vti) file.
Args:
Ex, Ey, Ez, Hx, Hy, Hz (memory view): Electric and magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
pbar (class): Progress bar class instance.
"""
self.filehandle = open(self.filename, 'ab')
datasize = 3 * np.dtype(floattype).itemsize * (self.vtk_xfcells - self.vtk_xscells) * (self.vtk_yfcells - self.vtk_yscells) * (self.vtk_zfcells - self.vtk_zscells)
# Write number of bytes of appended data as UInt32
self.filehandle.write(pack('I', datasize))
for k in range(self.zs, self.zf, self.dz):
for j in range(self.ys, self.yf, self.dy):
for i in range(self.xs, self.xf, self.dx):
pbar.update(n=12)
# The electric field component value at a point comes from average of the 4 electric field component values in that cell
self.filehandle.write(pack(Snapshot.floatstring, (Ex[i, j, k] + Ex[i, j + 1, k] + Ex[i, j, k + 1] + Ex[i, j + 1, k + 1]) / 4))
self.filehandle.write(pack(Snapshot.floatstring, (Ey[i, j, k] + Ey[i + 1, j, k] + Ey[i, j, k + 1] + Ey[i + 1, j, k + 1]) / 4))
self.filehandle.write(pack(Snapshot.floatstring, (Ez[i, j, k] + Ez[i + 1, j, k] + Ez[i, j + 1, k] + Ez[i + 1, j + 1, k]) / 4))
self.filehandle.write(pack('I', self.datasizefield))
pbar.update(n=4)
self.electric.tofile(self.filehandle)
pbar.update(n=self.datasizefield)
self.filehandle.write(pack('I', datasize))
for k in range(self.zs, self.zf, self.dz):
for j in range(self.ys, self.yf, self.dy):
for i in range(self.xs, self.xf, self.dx):
pbar.update(n=12)
# The magnetic field component value at a point comes from average
# of 2 magnetic field component values in that cell and the following cell
self.filehandle.write(pack(Snapshot.floatstring, (Hx[i, j, k] + Hx[i + 1, j, k]) / 2))
self.filehandle.write(pack(Snapshot.floatstring, (Hy[i, j, k] + Hy[i, j + 1, k]) / 2))
self.filehandle.write(pack(Snapshot.floatstring, (Hz[i, j, k] + Hz[i, j, k + 1]) / 2))
self.filehandle.write(pack('I', datasize))
for k in range(self.zs, self.zf, self.dz):
for j in range(self.ys, self.yf, self.dy):
for i in range(self.xs, self.xf, self.dx):
pbar.update(n=12)
self.filehandle.write(pack(Snapshot.floatstring, Ix(i, j, k, Hx, Hy, Hz, G)))
self.filehandle.write(pack(Snapshot.floatstring, Iy(i, j, k, Hx, Hy, Hz, G)))
self.filehandle.write(pack(Snapshot.floatstring, Iz(i, j, k, Hx, Hy, Hz, G)))
# Write number of bytes of appended data as UInt32
self.filehandle.write(pack('I', self.datasizefield))
pbar.update(n=4)
self.magnetic.tofile(self.filehandle)
pbar.update(n=self.datasizefield)
self.filehandle.write('\n</AppendedData>\n</VTKFile>'.encode('utf-8'))
self.filehandle.close()
def gpu_initialise_snapshot_array(G):
"""Initialise array on GPU for to store field data for snapshots.
Args:
G (class): Grid class instance - holds essential parameters describing the model.
Returns:
snapE*_gpu, snapH*_gpu (float): numpy arrays of snapshot data on GPU.
"""
import pycuda.gpuarray as gpuarray
# Get dimensions of largest requested snapshot
for snap in G.snapshots:
if snap.nx > Snapshot.nx_max:
Snapshot.nx_max = snap.nx
if snap.ny > Snapshot.ny_max:
Snapshot.ny_max = snap.ny
if snap.nz > Snapshot.nz_max:
Snapshot.nz_max = snap.nz
# GPU - blocks per grid - according to largest requested snapshot
Snapshot.bpg = (int(np.ceil(((Snapshot.nx_max) * (Snapshot.ny_max) * (Snapshot.nz_max)) / Snapshot.tpb[0])), 1, 1)
# 4D arrays to store snapshots on GPU, e.g. snapEx(time, x, y, z)
snapEx = np.zeros((len(G.snapshots), Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapEy = np.zeros((len(G.snapshots), Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapEz = np.zeros((len(G.snapshots), Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapHx = np.zeros((len(G.snapshots), Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapHy = np.zeros((len(G.snapshots), Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapHz = np.zeros((len(G.snapshots), Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
# Copy arrays to GPU
snapEx_gpu = gpuarray.to_gpu(snapEx)
snapEy_gpu = gpuarray.to_gpu(snapEy)
snapEz_gpu = gpuarray.to_gpu(snapEz)
snapHx_gpu = gpuarray.to_gpu(snapHx)
snapHy_gpu = gpuarray.to_gpu(snapHy)
snapHz_gpu = gpuarray.to_gpu(snapHz)
return snapEx_gpu, snapEy_gpu, snapEz_gpu, snapHx_gpu, snapHy_gpu, snapHz_gpu
def gpu_get_snapshot_array(snapEx_gpu, snapEy_gpu, snapEz_gpu, snapHx_gpu, snapHy_gpu, snapHz_gpu, i, snap):
"""Copy snapshot array used on GPU back to snapshot objects and store in format for Paraview.
Args:
snapE_gpu, snapH_gpu (float): numpy arrays of snapshot data from GPU.
i (int): index for snapshot data on GPU array.
snap (class): Snapshot class instance
"""
snap.electric = np.stack((snapEx_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapEy_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapEz_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf])).reshape(-1, order='F')
snap.magnetic = np.stack((snapHx_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapHy_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapHz_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf])).reshape(-1, order='F')