你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 15:10:13 +08:00
Move reframe test files into seperate directory
这个提交包含在:
361
reframe_tests/tests/base_tests.py
普通文件
361
reframe_tests/tests/base_tests.py
普通文件
@@ -0,0 +1,361 @@
|
||||
"""ReFrame base classes for GprMax tests"""
|
||||
import os
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
|
||||
import reframe as rfm
|
||||
import reframe.utility.sanity as sn
|
||||
import reframe.utility.typecheck as typ
|
||||
from numpy import product
|
||||
from reframe.core.builtins import (
|
||||
parameter,
|
||||
performance_function,
|
||||
require_deps,
|
||||
required,
|
||||
run_after,
|
||||
run_before,
|
||||
sanity_function,
|
||||
variable,
|
||||
)
|
||||
from reframe.utility import udeps
|
||||
|
||||
from gprMax.receivers import Rx
|
||||
from reframe_tests.utilities.deferrable import path_join
|
||||
|
||||
GPRMAX_ROOT_DIR = Path(__file__).parent.parent.resolve()
|
||||
PATH_TO_PYENV = os.path.join(".venv", "bin", "activate")
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class CreatePyenvTest(rfm.RunOnlyRegressionTest):
|
||||
valid_systems = ["generic", "archer2:login"]
|
||||
valid_prog_environs = ["builtin", "PrgEnv-gnu"]
|
||||
modules = ["cray-python"]
|
||||
|
||||
prerun_cmds = [
|
||||
"python -m venv --system-site-packages --prompt gprMax .venv",
|
||||
f"source {PATH_TO_PYENV}",
|
||||
"CC=cc CXX=CC FC=ftn python -m pip install --upgrade pip",
|
||||
f"CC=cc CXX=CC FC=ftn python -m pip install -r {os.path.join(GPRMAX_ROOT_DIR, 'requirements.txt')}",
|
||||
]
|
||||
executable = f"CC=cc CXX=CC FC=ftn python -m pip install -e {GPRMAX_ROOT_DIR}"
|
||||
|
||||
@run_after("init")
|
||||
def install_system_specific_dependencies(self):
|
||||
"""Install additional dependencies for specific systems"""
|
||||
if self.current_system.name == "archer2":
|
||||
"""
|
||||
Needed to prevent a pip install error.
|
||||
dask 2022.2.1 (installed) requires cloudpickle>=1.1.1, which
|
||||
is not installed and is missed by the pip dependency checks.
|
||||
|
||||
Not necessary for gprMax, but any error message is picked up
|
||||
by the sanity checks.
|
||||
"""
|
||||
self.prerun_cmds.insert(3, "CC=cc CXX=CC FC=ftn python -m pip install cloudpickle")
|
||||
|
||||
@sanity_function
|
||||
def check_requirements_installed(self):
|
||||
"""
|
||||
Check packages successfully installed from requirements.txt
|
||||
Check gprMax installed successfully and no other errors thrown
|
||||
"""
|
||||
return (
|
||||
sn.assert_found(
|
||||
r"(Successfully installed pip)|(Requirement already satisfied: pip.*\n(?!Collecting pip))",
|
||||
self.stdout,
|
||||
"Failed to update pip",
|
||||
)
|
||||
and sn.assert_found(
|
||||
r"Successfully installed (?!(gprMax)|(pip))",
|
||||
self.stdout,
|
||||
"Failed to install requirements",
|
||||
)
|
||||
and sn.assert_found(
|
||||
r"Successfully installed gprMax", self.stdout, "Failed to install gprMax"
|
||||
)
|
||||
and sn.assert_not_found(r"finished with status 'error'", self.stdout)
|
||||
and sn.assert_not_found(r"(ERROR|error):", self.stderr)
|
||||
)
|
||||
|
||||
|
||||
class GprMaxRegressionTest(rfm.RunOnlyRegressionTest):
|
||||
valid_systems = ["archer2:compute"]
|
||||
valid_prog_environs = ["PrgEnv-gnu"]
|
||||
modules = ["cray-python"]
|
||||
|
||||
num_cpus_per_task = 16
|
||||
exclusive_access = True
|
||||
|
||||
model = parameter()
|
||||
is_antenna_model = variable(bool, value=False)
|
||||
sourcesdir = required
|
||||
extra_executable_opts = variable(typ.List[str], value=[])
|
||||
executable = "time -p python -m gprMax --log-level 10 --hide-progress-bars"
|
||||
|
||||
rx_outputs = variable(typ.List[str], value=Rx.defaultoutputs)
|
||||
h5diff_header = f"{'=' * 10} h5diff output {'=' * 10}"
|
||||
|
||||
@run_after("init")
|
||||
def setup_env_vars(self):
|
||||
"""Set OMP_NUM_THREADS environment variable from num_cpus_per_task"""
|
||||
self.env_vars["OMP_NUM_THREADS"] = self.num_cpus_per_task
|
||||
|
||||
if self.current_system.name == "archer2":
|
||||
# Avoid inheriting slurm memory environment variables from any previous slurm job (i.e. the reframe job)
|
||||
self.prerun_cmds.append("unset SLURM_MEM_PER_NODE")
|
||||
self.prerun_cmds.append("unset SLURM_MEM_PER_CPU")
|
||||
|
||||
# Set the matplotlib cache to the work filesystem
|
||||
self.env_vars["MPLCONFIGDIR"] = "${HOME/home/work}/.config/matplotlib"
|
||||
|
||||
# TODO: Change CreatePyenvTest to a fixture instead of a test dependency
|
||||
@run_after("init")
|
||||
def inject_dependencies(self):
|
||||
"""Test depends on the Python virtual environment building correctly"""
|
||||
self.depends_on("CreatePyenvTest", udeps.by_env)
|
||||
|
||||
@require_deps
|
||||
def get_pyenv_path(self, CreatePyenvTest):
|
||||
"""Add prerun command to load the built Python environment"""
|
||||
path_to_pyenv = os.path.join(CreatePyenvTest(part="login").stagedir, PATH_TO_PYENV)
|
||||
self.prerun_cmds.append(f"source {path_to_pyenv}")
|
||||
|
||||
@run_after("setup", always_last=True)
|
||||
def configure_test_run(self, input_file_ext: str = ".in"):
|
||||
self.input_file = f"{self.model}{input_file_ext}"
|
||||
self.output_file = f"{self.model}.h5"
|
||||
self.executable_opts = [self.input_file, "-o", self.output_file]
|
||||
self.executable_opts += self.extra_executable_opts
|
||||
self.postrun_cmds = [
|
||||
f"python -m toolboxes.Plotting.plot_Ascan -save {self.output_file} --outputs {' '.join(self.rx_outputs)}"
|
||||
]
|
||||
self.keep_files = [self.input_file, self.output_file, f"{self.model}.pdf"]
|
||||
|
||||
if self.is_antenna_model:
|
||||
self.postrun_cmds = [
|
||||
f"python -m toolboxes.Plotting.plot_antenna_params -save {self.output_file}"
|
||||
]
|
||||
|
||||
antenna_t1_params = f"{self.model}_t1_params.pdf"
|
||||
antenna_ant_params = f"{self.model}_ant_params.pdf"
|
||||
self.keep_files += [
|
||||
antenna_t1_params,
|
||||
antenna_ant_params,
|
||||
]
|
||||
|
||||
@run_before("run")
|
||||
def combine_task_outputs(self):
|
||||
if self.num_tasks > 1:
|
||||
stdout = self.stdout.evaluate().split(".")[0]
|
||||
stderr = self.stderr.evaluate().split(".")[0]
|
||||
self.prerun_cmds.append(f"mkdir out")
|
||||
self.prerun_cmds.append(f"mkdir err")
|
||||
self.job.launcher.options = [
|
||||
f"--output=out/{stdout}_%t.out",
|
||||
f"--error=err/{stderr}_%t.err",
|
||||
]
|
||||
self.executable_opts += ["--log-all-ranks"]
|
||||
self.postrun_cmds.append(f"cat out/{stdout}_*.out >> {self.stdout}")
|
||||
self.postrun_cmds.append(f"cat err/{stderr}_*.err >> {self.stderr}")
|
||||
|
||||
@run_before("run")
|
||||
def check_input_file_exists(self):
|
||||
self.skip_if(
|
||||
not os.path.exists(os.path.join(self.sourcesdir, self.input_file)),
|
||||
f"Input file '{self.input_file}' not present in src directory '{self.sourcesdir}'",
|
||||
)
|
||||
|
||||
@run_before("run")
|
||||
def setup_reference_file(self):
|
||||
"""Build reference file path"""
|
||||
self.reference_file = Path("regression_checks", self.short_name).with_suffix(".h5")
|
||||
self.reference_file = os.path.abspath(self.reference_file)
|
||||
|
||||
@run_before("run", always_last=True)
|
||||
def setup_regression_check(self):
|
||||
"""Add h5diff command to run after the test"""
|
||||
if self.current_system.name == "archer2":
|
||||
self.modules.append("cray-hdf5")
|
||||
|
||||
if os.path.exists(self.reference_file):
|
||||
self.postrun_cmds.append(f"echo {self.h5diff_header}")
|
||||
self.postrun_cmds.append(f"h5diff {self.output_file} {self.reference_file}")
|
||||
|
||||
def test_simulation_complete(self):
|
||||
"""Check simulation completed successfully"""
|
||||
return sn.assert_not_found(
|
||||
r"(?i)error",
|
||||
self.stderr,
|
||||
f"An error occured. See '{path_join(self.stagedir, self.stderr)}' for details.",
|
||||
) and sn.assert_found(
|
||||
r"=== Simulation completed in ", self.stdout, "Simulation did not complete"
|
||||
)
|
||||
|
||||
@sanity_function
|
||||
def regression_check(self):
|
||||
"""
|
||||
Perform regression check by checking for the h5diff output.
|
||||
Create reference file from the test output if it does not exist.
|
||||
"""
|
||||
if sn.path_exists(self.reference_file):
|
||||
h5diff_output = sn.extractsingle(
|
||||
f"{self.h5diff_header}\n(?P<h5diff>[\S\s]*)", self.stdout, "h5diff"
|
||||
)
|
||||
return (
|
||||
self.test_simulation_complete()
|
||||
and sn.assert_found(self.h5diff_header, self.stdout, "Failed to find h5diff header")
|
||||
and sn.assert_false(
|
||||
h5diff_output,
|
||||
(
|
||||
f"Found h5diff output (see '{path_join(self.stagedir, self.stdout)}')\n"
|
||||
f"For more details run: 'h5diff {os.path.abspath(self.output_file)} {self.reference_file}'\n"
|
||||
f"To re-create regression file, delete '{self.reference_file}' and rerun the test."
|
||||
),
|
||||
)
|
||||
)
|
||||
else:
|
||||
copyfile(self.output_file, self.reference_file)
|
||||
return sn.assert_true(
|
||||
False, f"No reference file exists. Creating... '{self.reference_file}'"
|
||||
)
|
||||
|
||||
@performance_function("s", perf_key="run_time")
|
||||
def extract_run_time(self):
|
||||
"""Extract total runtime from the last task to complete"""
|
||||
return sn.extractsingle(
|
||||
r"real\s+(?P<run_time>\S+)", self.stderr, "run_time", float, self.num_tasks - 1
|
||||
)
|
||||
|
||||
@performance_function("s", perf_key="simulation_time")
|
||||
def extract_simulation_time(self):
|
||||
"""Extract simulation time reported by gprMax"""
|
||||
|
||||
# sn.extractall throws an error if a group has value None.
|
||||
# Therefore have to handle the < 1 min, >= 1 min and >= 1 hour cases separately.
|
||||
timeframe = sn.extractsingle(
|
||||
r"=== Simulation completed in \S+ (?P<timeframe>hour|minute|second)",
|
||||
self.stdout,
|
||||
"timeframe",
|
||||
)
|
||||
if timeframe == "hour":
|
||||
simulation_time = sn.extractall(
|
||||
r"=== Simulation completed in (?P<hours>\S+) hours?, (?P<minutes>\S+) minutes? and (?P<seconds>\S+) seconds? =*",
|
||||
self.stdout,
|
||||
["hours", "minutes", "seconds"],
|
||||
float,
|
||||
)
|
||||
hours = simulation_time[0][0]
|
||||
minutes = simulation_time[0][1]
|
||||
seconds = simulation_time[0][2]
|
||||
elif timeframe == "minute":
|
||||
hours = 0
|
||||
simulation_time = sn.extractall(
|
||||
r"=== Simulation completed in (?P<minutes>\S+) minutes? and (?P<seconds>\S+) seconds? =*",
|
||||
self.stdout,
|
||||
["minutes", "seconds"],
|
||||
float,
|
||||
)
|
||||
minutes = simulation_time[0][0]
|
||||
seconds = simulation_time[0][1]
|
||||
else:
|
||||
hours = 0
|
||||
minutes = 0
|
||||
seconds = sn.extractsingle(
|
||||
r"=== Simulation completed in (?P<seconds>\S+) seconds? =*",
|
||||
self.stdout,
|
||||
"seconds",
|
||||
float,
|
||||
)
|
||||
return hours * 3600 + minutes * 60 + seconds
|
||||
|
||||
|
||||
class GprMaxAPIRegressionTest(GprMaxRegressionTest):
|
||||
executable = "time -p python"
|
||||
|
||||
@run_after("setup", always_last=True)
|
||||
def configure_test_run(self):
|
||||
super().configure_test_run(input_file_ext=".py")
|
||||
|
||||
|
||||
class GprMaxBScanRegressionTest(GprMaxRegressionTest):
|
||||
num_models = parameter()
|
||||
|
||||
@run_after("setup", always_last=True)
|
||||
def configure_test_run(self):
|
||||
self.extra_executable_opts += ["-n", str(self.num_models)]
|
||||
super().configure_test_run()
|
||||
|
||||
self.postrun_cmds = [
|
||||
f"python -m toolboxes.Utilities.outputfiles_merge {self.model}",
|
||||
f"mv {self.model}_merged.h5 {self.output_file}",
|
||||
f"python -m toolboxes.Plotting.plot_Bscan -save {self.output_file} Ez",
|
||||
]
|
||||
|
||||
|
||||
class GprMaxTaskfarmRegressionTest(GprMaxBScanRegressionTest):
|
||||
serial_dependency: type[GprMaxRegressionTest]
|
||||
extra_executable_opts = ["-taskfarm"]
|
||||
sourcesdir = "src"
|
||||
|
||||
num_tasks = required
|
||||
|
||||
def _get_variant(self) -> str:
|
||||
variant = self.serial_dependency.get_variant_nums(
|
||||
model=lambda m: m == self.model, num_models=lambda n: n == self.num_models
|
||||
)
|
||||
return self.serial_dependency.variant_name(variant[0])
|
||||
|
||||
@run_after("init")
|
||||
def inject_dependencies(self):
|
||||
"""Test depends on the Python virtual environment building correctly"""
|
||||
self.depends_on(self._get_variant(), udeps.by_env)
|
||||
super().inject_dependencies()
|
||||
|
||||
@run_after("init")
|
||||
def setup_source_directory(self):
|
||||
"""Set the source directory to the same as the serial test"""
|
||||
self.sourcesdir = str(self.serial_dependency.sourcesdir)
|
||||
|
||||
@run_before("run")
|
||||
def setup_reference_file(self):
|
||||
"""Add prerun command to load the built Python environment"""
|
||||
target = self.getdep(self._get_variant())
|
||||
self.reference_file = os.path.join(target.stagedir, str(self.output_file))
|
||||
|
||||
|
||||
class GprMaxMPIRegressionTest(GprMaxRegressionTest):
|
||||
# TODO: Make this a variable
|
||||
serial_dependency: type[GprMaxRegressionTest]
|
||||
mpi_layout = parameter()
|
||||
sourcesdir = "src"
|
||||
|
||||
@run_after("setup", always_last=True)
|
||||
def configure_test_run(self):
|
||||
self.num_tasks = int(product(self.mpi_layout))
|
||||
self.extra_executable_opts = ["-mpi", *map(str, self.mpi_layout)]
|
||||
super().configure_test_run()
|
||||
|
||||
def _get_variant(self) -> str:
|
||||
variant = self.serial_dependency.get_variant_nums(model=lambda m: m == self.model)
|
||||
return self.serial_dependency.variant_name(variant[0])
|
||||
|
||||
@run_after("init")
|
||||
def inject_dependencies(self):
|
||||
"""Test depends on the specified serial test"""
|
||||
self.depends_on(self._get_variant(), udeps.by_env)
|
||||
super().inject_dependencies()
|
||||
|
||||
@run_after("init")
|
||||
def setup_source_directory(self):
|
||||
"""Set the source directory to the same as the serial test"""
|
||||
self.sourcesdir = str(self.serial_dependency.sourcesdir)
|
||||
|
||||
@run_before("run")
|
||||
def setup_reference_file(self):
|
||||
"""
|
||||
Set the reference file regression check to the output of the
|
||||
serial test
|
||||
"""
|
||||
target = self.getdep(self._get_variant())
|
||||
self.reference_file = os.path.join(target.stagedir, str(self.output_file))
|
315
reframe_tests/tests/reframe_tests.py
普通文件
315
reframe_tests/tests/reframe_tests.py
普通文件
@@ -0,0 +1,315 @@
|
||||
import reframe as rfm
|
||||
from base_tests import (
|
||||
GprMaxAPIRegressionTest,
|
||||
GprMaxBScanRegressionTest,
|
||||
GprMaxMPIRegressionTest,
|
||||
GprMaxRegressionTest,
|
||||
GprMaxTaskfarmRegressionTest,
|
||||
)
|
||||
from reframe.core.builtins import parameter, run_after, run_before
|
||||
|
||||
"""ReFrame tests for basic functionality
|
||||
|
||||
Usage:
|
||||
cd gprMax/reframe_tests
|
||||
reframe -C configuraiton/{CONFIG_FILE} -c reframe_tests.py -c base_tests.py -r
|
||||
"""
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestAscan(GprMaxRegressionTest):
|
||||
tags = {
|
||||
"test",
|
||||
"serial",
|
||||
"ascan",
|
||||
"2d",
|
||||
"hertzian_dipole",
|
||||
"waveform",
|
||||
"material",
|
||||
"box",
|
||||
"cylinder",
|
||||
}
|
||||
sourcesdir = "src/example_models"
|
||||
model = parameter(["cylinder_Ascan_2D"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestBscan(GprMaxBScanRegressionTest):
|
||||
tags = {
|
||||
"test",
|
||||
"serial",
|
||||
"bscan",
|
||||
"steps",
|
||||
"waveform",
|
||||
"hertzian_dipole",
|
||||
"material",
|
||||
"box",
|
||||
"cylinder",
|
||||
}
|
||||
sourcesdir = "src/bscan_tests"
|
||||
model = parameter(["cylinder_Bscan_2D"])
|
||||
num_models = parameter([64])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestSingleNodeTaskfarm(GprMaxTaskfarmRegressionTest):
|
||||
tags = {
|
||||
"test",
|
||||
"mpi",
|
||||
"taskfarm",
|
||||
"steps",
|
||||
"waveform",
|
||||
"hertzian_dipole",
|
||||
"material",
|
||||
"box",
|
||||
"cylinder",
|
||||
}
|
||||
num_tasks = 8
|
||||
num_tasks_per_node = 8
|
||||
serial_dependency = TestBscan
|
||||
model = serial_dependency.model
|
||||
num_models = serial_dependency.num_models
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestMultiNodeTaskfarm(GprMaxTaskfarmRegressionTest):
|
||||
tags = {
|
||||
"test",
|
||||
"mpi",
|
||||
"taskfarm",
|
||||
"steps",
|
||||
"waveform",
|
||||
"hertzian_dipole",
|
||||
"material",
|
||||
"box",
|
||||
"cylinder",
|
||||
}
|
||||
num_tasks = 32
|
||||
num_tasks_per_node = 8
|
||||
serial_dependency = TestBscan
|
||||
model = serial_dependency.model
|
||||
num_models = serial_dependency.num_models
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class Test2DModelXY(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "2d", "waveform", "hertzian_dipole"}
|
||||
sourcesdir = "src/2d_tests"
|
||||
model = parameter(["2D_EzHxHy"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class Test2DModelXZ(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "2d", "waveform", "hertzian_dipole"}
|
||||
sourcesdir = "src/2d_tests"
|
||||
model = parameter(["2D_EyHxHz"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class Test2DModelYZ(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "2d", "waveform", "hertzian_dipole"}
|
||||
sourcesdir = "src/2d_tests"
|
||||
model = parameter(["2D_ExHyHz"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestHertzianDipoleSource(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "hertzian_dipole", "waveform"}
|
||||
sourcesdir = "src/source_tests"
|
||||
model = parameter(["hertzian_dipole_fs"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestMagneticDipoleSource(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "magnetic_dipole", "waveform"}
|
||||
sourcesdir = "src/source_tests"
|
||||
model = parameter(["magnetic_dipole_fs"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestDispersiveMaterials(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "hertzian_dipole", "waveform", "material", "dispersive", "box"}
|
||||
sourcesdir = "src/material_tests"
|
||||
model = parameter(["hertzian_dipole_dispersive"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestTransmissionLineSource(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "transmission_line", "waveform"}
|
||||
sourcesdir = "src/source_tests"
|
||||
model = parameter(["transmission_line_fs"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestEdgeGeometry(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "geometry", "edge", "transmission_line", "waveform", "antenna"}
|
||||
sourcesdir = "src/geomtry_tests/edge_geometry"
|
||||
model = parameter(["antenna_wire_dipole_fs"])
|
||||
is_antenna_model = True
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestSubgrids(GprMaxAPIRegressionTest):
|
||||
tags = {
|
||||
"test",
|
||||
"api",
|
||||
"serial",
|
||||
"subgrid",
|
||||
"hertzian_dipole",
|
||||
"waveform",
|
||||
"material",
|
||||
"dispersive",
|
||||
"cylinder",
|
||||
}
|
||||
sourcesdir = "src/subgrid_tests"
|
||||
model = parameter(["cylinder_fs"])
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestSubgridsWithAntennaModel(GprMaxAPIRegressionTest):
|
||||
tags = {
|
||||
"test",
|
||||
"api",
|
||||
"serial",
|
||||
"subgrid",
|
||||
"antenna",
|
||||
"material",
|
||||
"box",
|
||||
"fractal_box",
|
||||
"add_surface_roughness",
|
||||
}
|
||||
sourcesdir = "src/subgrid_tests"
|
||||
model = parameter(["gssi_400_over_fractal_subsurface"])
|
||||
is_antenna_model = True
|
||||
|
||||
@run_after("init")
|
||||
def skip_test(self):
|
||||
self.skip_if(self.current_system.name == "archer2", "Takes ~1hr 30m on ARCHER2")
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class Test2DModelXYMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "2d", "waveform", "hertzian_dipole"}
|
||||
mpi_layout = parameter([[4, 4, 1]])
|
||||
serial_dependency = Test2DModelXY
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class Test2DModelXZMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "2d", "waveform", "hertzian_dipole"}
|
||||
mpi_layout = parameter([[4, 1, 4]])
|
||||
serial_dependency = Test2DModelXZ
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class Test2DModelYZMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "2d", "waveform", "hertzian_dipole"}
|
||||
mpi_layout = parameter([[1, 4, 4]])
|
||||
serial_dependency = Test2DModelYZ
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestHertzianDipoleSourceMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "hertzian_dipole", "waveform"}
|
||||
mpi_layout = parameter([[3, 3, 3]])
|
||||
serial_dependency = TestHertzianDipoleSource
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestMagneticDipoleSourceMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "magnetic_dipole", "waveform"}
|
||||
mpi_layout = parameter([[3, 3, 3]])
|
||||
serial_dependency = TestMagneticDipoleSource
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestDispersiveMaterialsMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "hertzian_dipole", "waveform", "material", "dispersive", "box"}
|
||||
mpi_layout = parameter([[3, 3, 3]])
|
||||
serial_dependency = TestDispersiveMaterials
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestTransmissionLineSourceMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "transmission_line", "waveform"}
|
||||
mpi_layout = parameter([[3, 3, 3]])
|
||||
serial_dependency = TestTransmissionLineSource
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestEdgeGeometryMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "geometry", "edge", "transmission_line", "waveform", "antenna"}
|
||||
mpi_layout = parameter([[3, 3, 3]])
|
||||
serial_dependency = TestEdgeGeometry
|
||||
model = serial_dependency.model
|
||||
is_antenna_model = True
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestBoxGeometryNoPml(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "geometery", "box"}
|
||||
sourcesdir = "src/geometry_tests/box_geometry"
|
||||
model = parameter(["box_full_model", "box_half_model", "box_single_rank"])
|
||||
|
||||
@run_before("run")
|
||||
def add_gprmax_commands(self):
|
||||
self.prerun_cmds.append(f"echo '#pml_cells: 0' >> {self.input_file}")
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestBoxGeometryDefaultPml(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "geometery", "box"}
|
||||
sourcesdir = "src/geometry_tests/box_geometry"
|
||||
model = parameter(
|
||||
[
|
||||
"box_full_model",
|
||||
"box_half_model",
|
||||
"box_single_rank",
|
||||
"box_outside_pml",
|
||||
"box_single_rank_outside_pml",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestBoxGeometryNoPmlMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "geometery", "box"}
|
||||
mpi_layout = parameter([[2, 2, 2], [3, 3, 3], [4, 4, 4]])
|
||||
serial_dependency = TestBoxGeometryNoPml
|
||||
model = serial_dependency.model
|
||||
|
||||
@run_before("run")
|
||||
def add_gprmax_commands(self):
|
||||
self.prerun_cmds.append(f"echo '#pml_cells: 0' >> {self.input_file}")
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestBoxGeometryDefaultPmlMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "geometery", "box"}
|
||||
mpi_layout = parameter([[2, 2, 2], [3, 3, 3], [4, 4, 4]])
|
||||
serial_dependency = TestBoxGeometryDefaultPml
|
||||
model = serial_dependency.model
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestSingleCellPml(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "geometery", "box", "pml"}
|
||||
sourcesdir = "src/pml_tests"
|
||||
model = parameter(["single_cell_pml_2d"])
|
||||
rx_outputs = ["Hx"]
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class TestSingleCellPmlMpi(GprMaxMPIRegressionTest):
|
||||
tags = {"test", "mpi", "geometery", "box", "pml"}
|
||||
mpi_layout = parameter([[2, 2, 1], [3, 3, 1]])
|
||||
serial_dependency = TestSingleCellPml
|
||||
model = serial_dependency.model
|
||||
rx_outputs = ["Hx"]
|
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
@@ -0,0 +1,8 @@
|
||||
#title: 2D test Ex, Hy, Hz components
|
||||
#domain: 0.001 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: x 0 0.050 0.050 myWave
|
||||
#rx: 0 0.070 0.070
|
@@ -0,0 +1,13 @@
|
||||
#title: 2D test Ex, Hy, Hz components
|
||||
#domain: 0.001 0.010 0.010
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#pml_cells: 0
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: x 0 0.005 0.005 myWave
|
||||
#rx: 0 0.002 0.002
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0 0 0 0.001 0.004 0.004 half_space
|
@@ -0,0 +1,8 @@
|
||||
#title: 2D test Ey, Hx, Hz components
|
||||
#domain: 0.100 0.001 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: y 0.050 0 0.050 myWave
|
||||
#rx: 0.070 0 0.070
|
@@ -0,0 +1,8 @@
|
||||
#title: 2D test Ez, Hx, Hy components
|
||||
#domain: 0.100 0.100 0.001
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0 myWave
|
||||
#rx: 0.070 0.070 0
|
@@ -0,0 +1,15 @@
|
||||
#title: B-scan from a metal cylinder buried in a dielectric half-space
|
||||
#domain: 0.240 0.210 0.002
|
||||
#dx_dy_dz: 0.002 0.002 0.002
|
||||
#time_window: 3e-9
|
||||
|
||||
#material: 6 0 1 0 half_space
|
||||
|
||||
#waveform: ricker 1 1.5e9 my_ricker
|
||||
#hertzian_dipole: z 0.040 0.170 0 my_ricker
|
||||
#rx: 0.080 0.170 0
|
||||
#src_steps: 0.002 0 0
|
||||
#rx_steps: 0.002 0 0
|
||||
|
||||
#box: 0 0 0 0.240 0.170 0.002 half_space
|
||||
#cylinder: 0.120 0.080 0 0.120 0.080 0.002 0.010 pec
|
@@ -0,0 +1,13 @@
|
||||
#title: A-scan from a metal cylinder buried in a dielectric half-space
|
||||
#domain: 0.240 0.210 0.002
|
||||
#dx_dy_dz: 0.002 0.002 0.002
|
||||
#time_window: 3e-9
|
||||
|
||||
#material: 6 0 1 0 half_space
|
||||
|
||||
#waveform: ricker 1 1.5e9 my_ricker
|
||||
#hertzian_dipole: z 0.100 0.170 0 my_ricker
|
||||
#rx: 0.140 0.170 0
|
||||
|
||||
#box: 0 0 0 0.240 0.170 0.002 half_space
|
||||
#cylinder: 0.120 0.080 0 0.120 0.080 0.002 0.010 pec
|
@@ -0,0 +1,11 @@
|
||||
#title: Hertzian dipole over a half-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0 0 0 0.100 0.100 0.100 half_space
|
@@ -0,0 +1,11 @@
|
||||
#title: Hertzian dipole over a half-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0 0 0 0.100 0.100 0.050 half_space
|
@@ -0,0 +1,11 @@
|
||||
#title: Hertzian dipole over a half-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0.020 0.020 0.020 0.080 0.080 0.050 half_space
|
@@ -0,0 +1,11 @@
|
||||
#title: Hertzian dipole over a half-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0 0 0 0.020 0.020 0.020 half_space
|
@@ -0,0 +1,11 @@
|
||||
#title: Hertzian dipole over a half-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0.030 0.030 0.030 0.045 0.045 0.045 half_space
|
@@ -0,0 +1,15 @@
|
||||
#title: Wire antenna - half-wavelength dipole in free-space
|
||||
#domain: 0.050 0.050 0.200
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 60e-9
|
||||
|
||||
#waveform: gaussian 1 1e9 mypulse
|
||||
#transmission_line: z 0.025 0.025 0.100 73 mypulse
|
||||
|
||||
## 150mm length
|
||||
#edge: 0.025 0.025 0.025 0.025 0.025 0.175 pec
|
||||
|
||||
## 1mm gap at centre of dipole
|
||||
#edge: 0.025 0.025 0.100 0.025 0.025 0.101 free_space
|
||||
|
||||
#geometry_view: 0.020 0.020 0.020 0.030 0.030 0.180 0.001 0.001 0.001 antenna_wire_dipole_fs f
|
@@ -0,0 +1,12 @@
|
||||
#title: Hertzian dipole in water
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
||||
|
||||
#material: 4.9 0 1 0 myWater
|
||||
#add_dispersion_debye: 1 75.2 9.231e-12 myWater
|
||||
#box: 0 0 0 0.100 0.100 0.100 myWater
|
@@ -0,0 +1,11 @@
|
||||
#title: Magnetic dipole over a half-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#magnetic_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0 0 0 0.100 0.100 0.050 half_space
|
@@ -0,0 +1,31 @@
|
||||
#title: Single depth PML
|
||||
#domain: 0.6 0.6 0.1
|
||||
#dx_dy_dz: 0.1 0.1 0.1
|
||||
#time_window: 10
|
||||
|
||||
#waveform: gaussiandot 1 1e7 myWave
|
||||
#hertzian_dipole: z 0.3 0.3 0 myWave
|
||||
#rx: 0.1 0.1 0 r01 Hx
|
||||
#rx: 0.1 0.2 0 r02 Hx
|
||||
#rx: 0.1 0.3 0 r03 Hx
|
||||
#rx: 0.1 0.4 0 r04 Hx
|
||||
|
||||
#rx: 0.2 0.1 0 r05 Hx
|
||||
#rx: 0.2 0.2 0 r06 Hx
|
||||
#rx: 0.2 0.3 0 r07 Hx
|
||||
#rx: 0.2 0.4 0 r08 Hx
|
||||
|
||||
#rx: 0.3 0.1 0 r09 Hx
|
||||
#rx: 0.3 0.2 0 r10 Hx
|
||||
#rx: 0.3 0.3 0 r11 Hx
|
||||
#rx: 0.3 0.4 0 r12 Hx
|
||||
|
||||
#rx: 0.4 0.1 0 r13 Hx
|
||||
#rx: 0.4 0.2 0 r14 Hx
|
||||
#rx: 0.4 0.3 0 r15 Hx
|
||||
#rx: 0.4 0.4 0 r16 Hx
|
||||
|
||||
#material: 8 0 1 0 half_space
|
||||
#box: 0 0 0 0.6 0.3 0.1 half_space
|
||||
|
||||
#pml_cells: 1 1 0 1 1 0
|
@@ -0,0 +1,9 @@
|
||||
#title: Hertzian dipole in free-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
|
||||
#snapshot: 0 0 0 0.100 0.100 0.100 0.01 0.01 0.01 2e-9 snapshot_3.h5
|
@@ -0,0 +1,9 @@
|
||||
#title: Hertzian dipole in free-space
|
||||
#domain: 0.100 0.100 0.001
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0 myWave
|
||||
|
||||
#snapshot: 0 0 0 0.100 0.100 0.001 0.01 0.01 0.01 2e-9 snapshot_3.h5
|
@@ -0,0 +1,8 @@
|
||||
#title: Hertzian dipole in free-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#hertzian_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
@@ -0,0 +1,8 @@
|
||||
#title: Magnetic dipole in free-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussiandot 1 1e9 myWave
|
||||
#magnetic_dipole: z 0.050 0.050 0.050 myWave
|
||||
#rx: 0.070 0.070 0.070
|
@@ -0,0 +1,8 @@
|
||||
#title: Transmission line in free-space
|
||||
#domain: 0.100 0.100 0.100
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 3e-9
|
||||
|
||||
#waveform: gaussian 1 1e9 mypulse
|
||||
#transmission_line: x 0.050 0.050 0.050 35 mypulse
|
||||
#rx: 0.070 0.070 0.070
|
@@ -0,0 +1,115 @@
|
||||
"""Cylinder in freespace
|
||||
|
||||
This example model demonstrates how to use subgrids at a basic level.
|
||||
|
||||
The geometry is 3D (required for any use of subgrids) and is of a water-filled
|
||||
cylindrical object in freespace. The subgrid encloses the cylinderical object
|
||||
using a fine spatial discretisation (1mm), and a courser spatial discretisation
|
||||
(5mm) is used in the rest of the model (main grid). A simple Hertzian dipole
|
||||
source is used with a waveform shaped as the first derivative of a gaussian.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import gprMax
|
||||
from gprMax.materials import calculate_water_properties
|
||||
|
||||
# File path - used later to specify name of output files
|
||||
fn = Path(__file__)
|
||||
parts = fn.parts
|
||||
|
||||
# Subgrid spatial discretisation in x, y, z directions
|
||||
dl_sg = 1e-3
|
||||
|
||||
# Subgrid ratio - must always be an odd integer multiple
|
||||
ratio = 5
|
||||
dl = dl_sg * ratio
|
||||
|
||||
# Domain extent
|
||||
x = 0.500
|
||||
y = 0.500
|
||||
z = 0.500
|
||||
|
||||
# Time window
|
||||
tw = 6e-9
|
||||
|
||||
scene = gprMax.Scene()
|
||||
|
||||
title = gprMax.Title(name=fn.name)
|
||||
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
|
||||
domain = gprMax.Domain(p1=(x, y, z))
|
||||
time_window = gprMax.TimeWindow(time=tw)
|
||||
|
||||
wf = gprMax.Waveform(wave_type="gaussiandot", amp=1, freq=1.5e9, id="mypulse")
|
||||
hd = gprMax.HertzianDipole(polarisation="z", p1=(0.205, 0.400, 0.250), waveform_id="mypulse")
|
||||
rx = gprMax.Rx(p1=(0.245, 0.400, 0.250))
|
||||
|
||||
scene.add(title)
|
||||
scene.add(dxdydz)
|
||||
scene.add(domain)
|
||||
scene.add(time_window)
|
||||
scene.add(wf)
|
||||
scene.add(hd)
|
||||
scene.add(rx)
|
||||
|
||||
# Cylinder parameters
|
||||
c1 = (0.225, 0.250, 0.100)
|
||||
c2 = (0.225, 0.250, 0.400)
|
||||
r = 0.010
|
||||
sg1 = (c1[0] - r, c1[1] - r, c1[2])
|
||||
sg2 = (c2[0] + r, c2[1] + r, c2[2])
|
||||
|
||||
# Create subgrid
|
||||
subgrid = gprMax.SubGridHSG(p1=sg1, p2=sg2, ratio=ratio, id="sg")
|
||||
scene.add(subgrid)
|
||||
|
||||
# Create water material
|
||||
eri, er, tau, sig = calculate_water_properties()
|
||||
water = gprMax.Material(er=eri, se=sig, mr=1, sm=0, id="water")
|
||||
subgrid.add(water)
|
||||
water = gprMax.AddDebyeDispersion(poles=1, er_delta=[er - eri], tau=[tau], material_ids=["water"])
|
||||
subgrid.add(water)
|
||||
|
||||
# Add cylinder to subgrid
|
||||
cylinder = gprMax.Cylinder(p1=c1, p2=c2, r=r, material_id="water")
|
||||
subgrid.add(cylinder)
|
||||
|
||||
# Create some geometry views for both subgrid and main grid
|
||||
gvsg = gprMax.GeometryView(
|
||||
p1=sg1,
|
||||
p2=sg2,
|
||||
dl=(dl_sg, dl_sg, dl_sg),
|
||||
filename=fn.with_suffix("").parts[-1] + "_sg",
|
||||
output_type="n",
|
||||
)
|
||||
subgrid.add(gvsg)
|
||||
|
||||
gv1 = gprMax.GeometryView(
|
||||
p1=(0, 0, 0),
|
||||
p2=(x, y, z),
|
||||
dl=(dl, dl, dl),
|
||||
filename=fn.with_suffix("").parts[-1],
|
||||
output_type="n",
|
||||
)
|
||||
scene.add(gv1)
|
||||
|
||||
# Create some snapshots of entire domain
|
||||
for i in range(5):
|
||||
s = gprMax.Snapshot(
|
||||
p1=(0, 0, 0),
|
||||
p2=(x, y, z),
|
||||
dl=(dl, dl, dl),
|
||||
time=(i + 0.5) * 1e-9,
|
||||
filename=fn.with_suffix("").parts[-1] + "_" + str(i + 1),
|
||||
)
|
||||
scene.add(s)
|
||||
|
||||
gprMax.run(
|
||||
scenes=[scene],
|
||||
n=1,
|
||||
geometry_only=False,
|
||||
outputfile=fn,
|
||||
subgrid=True,
|
||||
autotranslate=True,
|
||||
log_level=25,
|
||||
)
|
@@ -0,0 +1,166 @@
|
||||
"""GPR antenna model (like a GSSI 400MHz antenna) over layered media with a
|
||||
rough subsurface interface.
|
||||
|
||||
This example model demonstrates how to use subgrids at a more advanced level -
|
||||
combining use of an imported antenna model and rough subsurface interface.
|
||||
|
||||
The geometry is 3D (required for any use of subgrids) and is of a 2 layered
|
||||
subsurface. The top layer in a sandy soil and the bottom layer a soil with
|
||||
higher permittivity (both have some simple conductive loss). There is a rough
|
||||
interface between the soil layers. A GPR antenna model (like a GSSI 400MHz
|
||||
antenna) is imported and placed on the surface of the layered media. The antenna
|
||||
is meshed using a subgrid with a fine spatial discretisation (1mm), and a
|
||||
courser spatial discretisation (9mm) is used in the rest of the model (main
|
||||
grid).
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gprMax
|
||||
from toolboxes.GPRAntennaModels.GSSI import antenna_like_GSSI_400
|
||||
|
||||
# File path - used later to specify name of output files
|
||||
fn = Path(__file__)
|
||||
parts = fn.parts
|
||||
|
||||
# Subgrid spatial discretisation in x, y, z directions
|
||||
dl_sg = 1e-3
|
||||
|
||||
# Subgrid ratio - must always be an odd integer multiple
|
||||
ratio = 9
|
||||
dl = dl_sg * ratio
|
||||
|
||||
# Domain extent
|
||||
x = 3
|
||||
y = 1
|
||||
z = 2
|
||||
|
||||
# Time window
|
||||
# Estimated two way travel time over 1 metre in material with highest
|
||||
# permittivity, slowest velocity.
|
||||
tw = 2 / 3e8 * (np.sqrt(3.2) + np.sqrt(9))
|
||||
|
||||
scene = gprMax.Scene()
|
||||
|
||||
title = gprMax.Title(name=fn.name)
|
||||
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
|
||||
domain = gprMax.Domain(p1=(x, y, z))
|
||||
time_window = gprMax.TimeWindow(time=tw)
|
||||
|
||||
scene.add(title)
|
||||
scene.add(dxdydz)
|
||||
scene.add(domain)
|
||||
scene.add(time_window)
|
||||
|
||||
# Dimensions of antenna case
|
||||
antenna_case = (0.3, 0.3, 0.178)
|
||||
|
||||
# Position of antenna
|
||||
antenna_p = (x / 2, y / 2, 170 * dl)
|
||||
|
||||
# Extra distance surrounding antenna for subgrid
|
||||
bounding_box = 2 * dl
|
||||
|
||||
# Subgrid extent
|
||||
sg_x0 = antenna_p[0] - antenna_case[0] / 2 - bounding_box
|
||||
sg_y0 = antenna_p[1] - antenna_case[1] / 2 - bounding_box
|
||||
sg_z0 = antenna_p[2] - bounding_box
|
||||
sg_x1 = antenna_p[0] + antenna_case[0] / 2 + bounding_box
|
||||
sg_y1 = antenna_p[1] + antenna_case[1] / 2 + bounding_box
|
||||
sg_z1 = antenna_p[2] + antenna_case[2] + bounding_box
|
||||
|
||||
# Create subgrid
|
||||
sg = gprMax.SubGridHSG(p1=[sg_x0, sg_y0, sg_z0], p2=[sg_x1, sg_y1, sg_z1], ratio=ratio, id="sg")
|
||||
scene.add(sg)
|
||||
|
||||
# Create and add a box of homogeneous material to main grid - sandy_soil
|
||||
sandy_soil = gprMax.Material(er=3.2, se=0.397e-3, mr=1, sm=0, id="sandy_soil")
|
||||
scene.add(sandy_soil)
|
||||
b1 = gprMax.Box(p1=(0, 0, 0), p2=(x, y, antenna_p[2]), material_id="sandy_soil")
|
||||
scene.add(b1)
|
||||
|
||||
# Position box of sandy_soil in the subgrid.
|
||||
# It has to be positioned manually because it traverses the main grid/subgrid
|
||||
# interface. Grid traversal is when objects extend beyond the outer surface.
|
||||
# Setting autotranslate to false allows you to place objects beyond the outer
|
||||
# surface.
|
||||
|
||||
# PML separation from the outer surface
|
||||
ps = ratio // 2 + 2
|
||||
# Number of PML cells in the subgrid
|
||||
pc = 6
|
||||
# Inner surface/outer surface separation
|
||||
isos = 3 * ratio
|
||||
|
||||
# Calculate maximum z-coordinate (height) for box of sandy_soil in subgrid
|
||||
h = antenna_p[2] - sg_z0 + (ps + pc + isos) * dl_sg
|
||||
|
||||
# Create and add a box of homogeneous material to subgrid - sandy_soil
|
||||
sg.add(sandy_soil)
|
||||
b2 = gprMax.Box(p1=(0, 0, 0), p2=(411 * dl_sg, 411 * dl_sg, h), material_id="sandy_soil")
|
||||
# Set autotranslate for the box object to false
|
||||
b2.autotranslate = False
|
||||
sg.add(b2)
|
||||
|
||||
# Import antenna model and add components to subgrid
|
||||
gssi_objects = antenna_like_GSSI_400(*antenna_p, resolution=dl_sg)
|
||||
for obj in gssi_objects:
|
||||
sg.add(obj)
|
||||
|
||||
# Create and add a homogeneous material with a rough surface
|
||||
soil = gprMax.Material(er=9, se=0.397e-3, mr=1, sm=0, id="soil")
|
||||
scene.add(soil)
|
||||
|
||||
fb = gprMax.FractalBox(
|
||||
p1=(0, 0, 0),
|
||||
p2=(3, 1, 1),
|
||||
frac_dim=1.5,
|
||||
weighting=(1, 1, 1),
|
||||
n_materials=1,
|
||||
mixing_model_id="soil",
|
||||
id="fbox",
|
||||
seed=1,
|
||||
)
|
||||
scene.add(fb)
|
||||
|
||||
rough_surf = gprMax.AddSurfaceRoughness(
|
||||
p1=(0, 0, 1),
|
||||
p2=(3, 1, 1),
|
||||
frac_dim=1.5,
|
||||
weighting=(1, 1),
|
||||
limits=(0.4, 1.2),
|
||||
fractal_box_id="fbox",
|
||||
seed=1,
|
||||
)
|
||||
scene.add(rough_surf)
|
||||
|
||||
# Create some snapshots and geometry views
|
||||
for i in range(1, 51):
|
||||
snap = gprMax.Snapshot(
|
||||
p1=(0, y / 2, 0),
|
||||
p2=(x, y / 2 + dl, z),
|
||||
dl=(dl, dl, dl),
|
||||
filename=Path(*parts[:-1], f"{parts[-1]}_{str(i)}").name,
|
||||
time=i * tw / 50,
|
||||
)
|
||||
scene.add(snap)
|
||||
|
||||
gvsg = gprMax.GeometryView(
|
||||
p1=(sg_x0, sg_y0, sg_z0),
|
||||
p2=(sg_x1, sg_y1, sg_z1),
|
||||
dl=(dl_sg, dl_sg, dl_sg),
|
||||
filename=fn.with_suffix("").parts[-1] + "_sg",
|
||||
output_type="n",
|
||||
)
|
||||
sg.add(gvsg)
|
||||
|
||||
gv1 = gprMax.GeometryView(
|
||||
p1=(0, 0, 0), p2=domain.props.p1, dl=dl, filename=fn.with_suffix("").parts[-1], output_type="n"
|
||||
)
|
||||
scene.add(gv1)
|
||||
|
||||
gprMax.run(
|
||||
scenes=[scene], n=1, geometry_only=False, outputfile=fn, subgrid=True, autotranslate=True
|
||||
)
|
在新工单中引用
屏蔽一个用户