Updates/corrections to RTM process.

这个提交包含在:
Craig Warren
2022-01-20 09:27:31 +00:00
父节点 5d49f5311f
当前提交 003df06143

查看文件

@@ -7,41 +7,58 @@ import numpy as np
from scipy.constants import c from scipy.constants import c
from scipy.io import loadmat from scipy.io import loadmat
# Load B-scan data to be migrated
matfile = Path(str(Path(__file__).parent.resolve()), 'bgr_6.mat')
matcontents = loadmat(str(matfile))
data = matcontents['data']
# Specify trace interval (metres), sampling interval (seconds),
# and create time vector for B-scan data
trac_int = 0.005
samp_int = 1.7578e-11
time = np.linspace(0, samp_int * data.shape[1], data.shape[1])
# Specify velocity/permittivity of B-scan data
v = 0.12e9
er = (c / v)**2
# Reverse B-scan data to use as sources for RTM model
data = np.flipud(data)
# Title and file path for FDTD model output # Title and file path for FDTD model output
modeltitle = 'rtm_model' modeltitle = 'rtm_model'
fn = Path(__file__) fn = Path(__file__)
fn = Path(fn.parent, modeltitle) fn = Path(fn.parent, modeltitle)
# FDTD discretisation # Load B-scan data to be migrated
dl = trac_int matfile = Path(str(Path(__file__).parent.resolve()), 'bgr_6.mat')
matcontents = loadmat(str(matfile))
data = matcontents['data']
data = np.transpose(data) # Transpose to rows: samples, cols: traces
# FDTD domain - 2D # Specify trace interval, sampling interval, & create time vector for B-scan data
trac_int = 0.005 # metres
samp_int = 1.7578e-11 # seconds
maxtime = samp_int * data.shape[0]
time = np.linspace(0, maxtime, data.shape[0])
# Specify velocity/permittivity of B-scan data
v = 0.12e9
# Depth used for calculating FDTD z-dimension
depth = v * maxtime / 2
# FDTD discretisation, 2D domain dims, and time window
dl = 0.005 # metres
pml_cells = 10 pml_cells = 10
extra_cells = 10 # Allow some extra cells after PML before placing sources extra_cells = 10 # Allow some extra cells after PML before placing sources
x = (data.shape[0] + 2 * pml_cells + 2 * extra_cells) * dl x_cells = data.shape[1] + 2 * pml_cells + 2 * extra_cells
y = (data.shape[1] + 2 * pml_cells + 2 * extra_cells) * dl x = x_cells * trac_int
z = trac_int y_cells = 1
y = y_cells * dl
z_cells = int(np.ceil(depth / dl) + 2 * pml_cells + 2 * extra_cells)
z = z_cells * dl
# FDTD time window # Holds permittivity field to import into FDTD model
timewindow = (data.shape[1] - 1) * samp_int er = np.ones((x_cells, y_cells, z_cells - (pml_cells + extra_cells)))
er_value = np.around(4 * (c / v)**2, decimals=2) # 4xEr as velocity doubled
er = er * er_value
mat_ers = np.unique(er)
# Write materials text file
with open(fn.with_suffix('.txt'), 'w') as fmaterials:
for i, mat_er in enumerate(mat_ers):
er[er==mat_er] = i
fmaterials.write(f'#material: {mat_er} 0 1 0 mat{i}\n')
# Write permittivity HDF5 file
with h5py.File(fn.with_suffix('.h5'), 'w') as fdata:
fdata.attrs['Title'] = modeltitle
fdata.attrs['dx_dy_dz'] = (dl, dl, dl)
fdata['/data'] = er.astype('int16')
# Build FDTD model # Build FDTD model
scene = gprMax.Scene() scene = gprMax.Scene()
@@ -49,31 +66,26 @@ scene = gprMax.Scene()
title = gprMax.Title(name=modeltitle) title = gprMax.Title(name=modeltitle)
domain = gprMax.Domain(p1=(x, y, z)) domain = gprMax.Domain(p1=(x, y, z))
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl)) dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
time_window = gprMax.TimeWindow(time=timewindow) time_window = gprMax.TimeWindow(time=maxtime)
scene.add(title) scene.add(title)
scene.add(domain) scene.add(domain)
scene.add(dxdydz) scene.add(dxdydz)
scene.add(time_window) scene.add(time_window)
# Specify materials and geometry for FDTD go = gprMax.GeometryObjectsRead(p1=(0, 0, 0), geofile=fn.with_suffix('.h5'),
# N.B Permittivity should be 4 x permittivity from B-scan, i.e 2 x velocity matfile=fn.with_suffix('.txt'))
mat1 = gprMax.Material(er=4*er, se=0, mr=1, sm=0, id='mat1')
b1 = gprMax.Box(p1=(0, 0, 0), p2=(domain.props.p1[0],
domain.props.p1[1] - (pml_cells + extra_cells) * dl,
domain.props.p1[2]), material_id='mat1')
# Specify waveforms and sources from reversed B-scan data # Specify waveforms and sources from reversed B-scan data
data = np.transpose(data) # Transpose to match shape of time vector
for i in range(data.shape[1]): for i in range(data.shape[1]):
wv = gprMax.Waveform(wave_type='user', wv = gprMax.Waveform(wave_type='user',
user_values=data[:,i], user_time=time, user_values=np.flipud(data[:,i]), user_time=time,
kind='linear', fill_value='extrapolate',
id='mypulse' + str(i + 1)) id='mypulse' + str(i + 1))
scene.add(wv) scene.add(wv)
src = gprMax.HertzianDipole(polarisation='z', src = gprMax.HertzianDipole(polarisation='y',
p1=((pml_cells + extra_cells) * dl + i * trac_int, p1=((pml_cells + extra_cells) * dl + i * trac_int,
domain.props.p1[1] - (pml_cells + extra_cells) * dl, 0), 0, domain.props.p1[2] - (pml_cells + extra_cells) * dl),
waveform_id='mypulse' + str(i + 1)) waveform_id='mypulse' + str(i + 1))
scene.add(src) scene.add(src)
@@ -81,47 +93,63 @@ gv = gprMax.GeometryView(p1=(0, 0, 0), p2=domain.props.p1, dl=(dl, dl, dl),
filename=fn.with_suffix('').parts[-1], filename=fn.with_suffix('').parts[-1],
output_type='n') output_type='n')
# Snapshot of at end of time window will be RTM result # Snapshot at end of time window is RTM result
fileext = '.h5' # Can also be '.vti' for a VTK format fileext = '.h5' # Can also be '.vti' for a VTK format
snap = gprMax.Snapshot(p1=(0, 0, 0), p2=domain.props.p1, dl=(dl, dl, dl), snap = gprMax.Snapshot(p1=((pml_cells + extra_cells) * dl,
filename=fn.with_suffix('').parts[-1] + '_rtm_result', 0,
fileext=fileext, time=timewindow) (pml_cells + extra_cells) * dl),
p2=(domain.props.p1[0] - (pml_cells + extra_cells) * dl,
dl,
domain.props.p1[2] - (pml_cells + extra_cells) * dl),
dl=(dl, dl, dl),
filename=fn.with_suffix('').parts[-1] + '_rtm_result',
fileext=fileext, time=maxtime)
scene.add(mat1) scene.add(go)
scene.add(b1)
scene.add(gv) scene.add(gv)
scene.add(snap) scene.add(snap)
# Run FDTD model # Run FDTD model
gprMax.run(scenes=[scene], n=1, geometry_only=False, outputfile=fn) #gprMax.run(scenes=[scene], n=1, geometry_only=False, outputfile=fn)
# Open RTM results file # Open RTM results file
filename = Path(str(fn) + '_snaps', fn.with_suffix('').parts[-1] + '_rtm_result' + fileext) filename = Path(str(fn) + '_snaps', fn.with_suffix('').parts[-1] + '_rtm_result' + fileext)
fieldcomponent = 'Ez' fieldcomponent = 'Ey'
f = h5py.File(filename, 'r') with h5py.File(filename, 'r') as f:
outputdata = f[fieldcomponent] outputdata = f[fieldcomponent]
outputdata = np.array(outputdata) outputdata = np.array(outputdata)
time = f.attrs['time'] time = f.attrs['time']
f.close()
# Manipulation/processing of outputdata # Manipulation/processing of outputdata
outputdata = outputdata.squeeze() outputdata = outputdata.squeeze()
outputdata = outputdata.transpose() outputdata = outputdata.transpose()
# Plot RTM result # Plot RTM result
fig = plt.figure(num=str(filename), figsize=(20, 10), facecolor='w', edgecolor='w') min_max_plt = (-1000, 1000)
plt.imshow(outputdata, extent=[0, outputdata.shape[1], time, 0], fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, num=str(filename),
interpolation='nearest', aspect='auto', cmap='gray', figsize=(15, 10), facecolor='w', edgecolor='w')
vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata))) orig_plt = ax1.imshow(data, extent=[0, data.shape[1] * trac_int,
plt.xlabel('Trace number') (data.shape[0] * samp_int) / 2 * v, 0], interpolation='nearest',
plt.ylabel('Time [s]') aspect='auto', cmap='viridis', vmin=-np.amax(np.abs(data)),
vmax=np.amax(np.abs(data)))
ax1.set_xlabel('Distance [m]')
ax1.set_ylabel('Depth [m]')
ax1.title.set_text('Original')
ax1.grid(which='both', axis='both', linestyle='-.')
cb1 = plt.colorbar(orig_plt, ax=ax1)
cb1.set_label(fieldcomponent + ' [V/m]')
# Grid properties rtm_plt = ax2.imshow(np.flipud(outputdata),
ax = fig.gca() extent=[0, outputdata.shape[1] * dl, depth, 0],
ax.grid(which='both', axis='both', linestyle='-.') interpolation='nearest', aspect='auto', cmap='viridis',
vmin=-np.amax(np.abs(outputdata)),
cb = plt.colorbar() vmax=np.amax(np.abs(outputdata)))
cb.set_label(fieldcomponent + ' [V/m]') ax2.set_xlabel('Distance [m]')
ax2.set_ylabel('Depth [m]')
ax2.title.set_text('RTM')
ax2.grid(which='both', axis='both', linestyle='-.')
cb2 = plt.colorbar(rtm_plt, ax=ax2)
cb2.set_label(fieldcomponent + ' [V/m]')
# Save a PDF/PNG of the figure # Save a PDF/PNG of the figure
# fig.savefig(filename.with_suffix('.pdf'), dpi=None, format='pdf', # fig.savefig(filename.with_suffix('.pdf'), dpi=None, format='pdf',