import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import interp1d from config import Field_data_test_Config as cfg from config import Path_Config as pcfg def shift_data_to_end(data, n): """ Shift the first n values of a 1D data array to the end. Parameters: data (list or numpy array): 1D data array n (int): Number of elements to shift Returns: numpy array: Shifted data """ if n < 0 or n > len(data): raise ValueError("Shift length n must be between 0 and the data length.") return np.concatenate((data[n:], data[:n])) # Step 1: Read 1D data from CSV or TXT file def read_file(file_path, idx): if file_path.endswith('.csv'): data = pd.read_csv(file_path, header=None) # Assuming no column names one_d_data = data.iloc[1:, idx].values # Read data from the idx-th column elif file_path.endswith('.txt'): data = np.loadtxt(file_path) # Assuming TXT file contains only numeric values one_d_data = data if data.ndim == 1 else data[:, 0] # Ensure it's 1D else: raise ValueError("Unsupported file format. Please provide a .csv or .txt file.") return one_d_data # Step 2: Normalize data by dividing by its maximum absolute value def normalize_data(data): max_abs_value = np.max(np.abs(data)) return data if max_abs_value == 0 else data / max_abs_value # Avoid division by zero # Step 3: Interpolate data to a length of 1000 def interpolate_data(data, target_length=1000): original_length = len(data) x_original = np.linspace(0, 1, original_length) x_target = np.linspace(0, 1, target_length) interpolator = interp1d(x_original, data, kind='cubic') # Cubic interpolation return interpolator(x_target) # Step 4: Save processed data to a CSV file def save_to_csv(data, output_path): pd.DataFrame(data).to_csv(output_path, index=False, header=False) # Step 5: Plot original and interpolated data def plot_data(original_data, interpolated_data): plt.figure(figsize=(10, 5)) plt.plot(original_data, label='Original Data', marker='o', linestyle='--', alpha=0.7) plt.plot(np.linspace(0, len(original_data)-1, len(interpolated_data)), interpolated_data, label='Interpolated Data', linestyle='-', linewidth=2) plt.legend() plt.xlabel('Index') plt.ylabel('Value') plt.title('Data Normalization and Interpolation') plt.grid(alpha=0.3) plt.show() # Main execution if __name__ == "__main__": input_file = pcfg.PROCESSED_TEST_FILE # Input file path output_csv = pcfg.field_impulse # Output file path idx = cfg.refer_wave_idx # Column index to read data from static_time=cfg.static_time wavelet_range=cfg.wavelet_range data = read_file(input_file, idx) normalized_data = normalize_data(data) # Zero out unwanted data regions normalized_data[wavelet_range[1]:] = 0 # Set values after the source wave to zero normalized_data[0:wavelet_range[0]] = 0 # Set values before the source wave to zero interpolated_data = interpolate_data(normalized_data,cfg.time_window_length) interpolated_data = shift_data_to_end(interpolated_data, static_time) save_to_csv(interpolated_data, output_csv) plot_data(normalized_data, interpolated_data)