update README.md.

Signed-off-by: 葛峻恺 <202115006@mail.sdu.edu.cn>
这个提交包含在:
葛峻恺
2025-04-04 03:02:25 +00:00
提交者 Gitee
父节点 fd9c386cef
当前提交 10f0f77a63

查看文件

@@ -20,39 +20,49 @@ GPR-SIDL-inv/
├── dataset/ # Training/testing data and synthetic datasets ├── dataset/ # Training/testing data and synthetic datasets
├── field_data/ # Network architectures ├── field_data/ # Used to store field data for inversion
├── gprMax/ # Data processing, waveform simulation, etc. ├── gprMax/ # Forward modeling package developed by the University of Edinburgh
├── IMG/ # Training script ├── IMG/ # Used for storing data processing and inversion result graphs
├── impulse/ # Inversion / prediction script ├── impulse/ # Used to store simulated and measured source wavelet files
├── log/ # Custom loss functions ├── log/ # operation log
├── Network/ # Custom loss functions ├── Network/ # Used for storing network models and data loading programs
├── readgssi/ # Inversion / prediction script ├── readgssi/ # Software package for reading and converting raw data
├── SAVE/ # Custom loss functions ├── SAVE/ # Save the trained model
├── time_result_csv/ # Custom loss functions ├── time_result_csv/ # Inverse results in the time domain
├── utils/ # Custom loss functions ├── utils/ # tool kit
├── 1_model_generator.py # Randomly generate in files as needed to support forward modeling of gprMax in 3D media. ├── 1_model_generator.py # Randomly generate in files as needed to support forward modeling of gprMax in 3D media.
├── 2_forward_simulation.py # Run the forward modeling program to generate A-scan results ├── 2_forward_simulation.py # Run the forward modeling program to generate A-scan results
├── 3_combine_dataset.py # Filter all A-scan data and generate a dataset ├── 3_combine_dataset.py # Filter all A-scan data and generate a dataset
├── 4_gssi_data_convert.py # Convert the dzt file of the measured GSSI GPR to CSV format ├── 4_gssi_data_convert.py # Convert the dzt file of the measured GSSI GPR to CSV format
├── 5_data_preprocess.py # Preprocess the measured raw data (dewow, direct wave removal, static correction, etc.) ├── 5_data_preprocess.py # Preprocess the measured raw data (dewow, direct wave removal, static correction, etc.)
├── 6_extract_impulse.py # Extract the true source wavelet from the processed data ├── 6_extract_impulse.py # Extract the true source wavelet from the processed data
├── 7_network_train.py # Training a deep learning network for inversion ├── 7_network_train.py # Training a deep learning network for inversion
├── 8_prediction.py # Predicting real measured data ├── 8_prediction.py # Predicting real measured data
├── 9_time_depth_convert.py # Convert the predicted results into the deep domain through integration ├── 9_time_depth_convert.py # Convert the predicted results into the deep domain through integration
├── config.yaml # Configuration file ├── config.yaml # Configuration file
├── requirements.txt # Python dependencies ├── requirements.txt # Python dependencies
└── README.md # This file └── README.md # This file