function [x,info,res] = pardiso_MT_new(A,b,OMP) % Solve for x in linear system A * x = b. % -------------------------------------- % Initialize the PARDISO internal data structures. We've told PARDISO to % handle complex matrices using the sparse direct solver. tp = tic; fprintf(['Degree of freedom: ' num2str(size(A,1)) '\n']); fprintf ('Solution to Ax=b via PARDISO\n') ; trilA = tril(A); % eps=1e-8; % A = A + eps * speye(size(A)); % info = pardisoinit(MTYPE,SOLVER); %SOLVER:0 sparse direct solver; 1 multi-recursive iterative solver info = pardisoinit(6,0); % OMP_NUM_THREADS is honored info.iparm(3) = OMP; info.iparm(28) =1; % Analyze the matrix and compute a symbolic factorization. verbose = false;%ture info = pardisoreorder(trilA,info,verbose); % fprintf('The factors have %d nonzero entries.\n',info.iparm(18)); % Compute the numeric factorization. t = tic; info = pardisofactor(trilA,info,verbose); time_fac = toc(t); % fprintf('The time of numeric factorization %.2f s.\n',time_fac); % Compute the solution x using the symbolic factorization. info.iparm(25)=0 ; %0 indicates that a sequential forward and backward solve is used t = tic; [x,info] = pardisosolve(trilA,b,info,verbose); % x = zeros(size(b)); % for i = 1:size(b,2) % [x(:,i),info] = pardisosolve(tril(A),b(:,i),info,verbose); % end time_sol = toc(t); % fprintf('The time of solution %.2f s.\n',time_sol); % fprintf('Memory factorization and solution %.2f GB.\n', single(info.iparm(17))/1024/1024); fprintf('Total peak memory consumption is peakmem = %.2f GB.\n', ... single( max(info.iparm(15), info.iparm(16)+info.iparm(17)) )/1024/1024); % Compute the residuals. res=zeros(2,1); for i = 1:2%size(b,2) res(i) = norm(A*x(:,i)-b(:,i))/norm(b(:,i)); fprintf('%s %d\n',['Normalized residual for rhs' num2str(i) ' is'], res(i)); end % Free the PARDISO data structures. if nargout<2 pardisofree(info); clear info end Solve_time = toc(tp); fprintf('The time of solve Ax=b %.2f s.\n',Solve_time); end